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ABSTRACT

Analysis of degenerate tensors is a fundamental step in finding the
topological structures and separatrices in tensor fields. Previous
work in this area have been limited to analyzing symmetric second
order tensor fields. In this paper, we extend the topological analysis
to 2D general (asymmetric) second order tensor fields. We show
that it is not sufficient to define degeneracies based on eigenvalues
alone, but one must also include the eigenvectors in the analysis.
We also study the behavior of these eigenvectors as they cross from
one topological region into another.
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1 INTRODUCTION

Many different physical processes can be described by 2nd order
tensor fields. Two common examples are stress tensors in materials
and geomechanics, and diffusion tensors in medical imaging. These
types of tensors are generally symmetric tensors where there are no
rotational components. For these, there are a few visualization tech-
niques available such as tensor ellipsoids [9, 7], texture renderings
[16, 6], volume rendering [8, 2, 14], and tensor topology [5, 13, 17].
However, there is a large class of mathematical and physical pro-
cesses that cannot be adequately represented by symmetric tensors.
This is particularly true in physical processes with strong rotational
components such as general deformation tensors with both plastic
and elastic deformations, and velocity gradient tensors in compress-
ible flows. For these, there is a more limited set of tools available
such as hyperstreamlines [3], and axis tripod glyphs [11].

The state of the art in visualizing general asymmetric tensor
fields is to decompose them into a symmetric tensor field and a rota-
tional vector field and then try to visualize these simultaneously or
separately either continuously or with discrete glyphs [3, 11]. How-
ever, these approaches can hardly deliver the effect of the asym-
metric tensor field as a whole entity. For example, the user has the
daunting task of somehow integrating the rotational components de-
picted by ribbons along the major, medium and minor hyperstream-
lines over the spatial domain of the data set.

The strategy proposed in this paper is to study the topology of
asymmetric tensor fields directly without having to explicitly de-
compose them first. This paper will focus on the analysis and visu-
alization of 2D general tensors of rank two.
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2 OVERVIEW

We classify a 2D general tensor as being in a real or a complex
domain. If the tensor has all real eigenvalues, we say that it is in the
real domain. If it has two complex eigenvalues, we say it is in the
complex domain.

In general tensor fields, we also define a degenerate tensor as
one with at least two repeated eigenvalues. Our investigations show
that degenerate tensors in a typical asymmetric tensor field only
have codimension one, rather than two as in symmetric tensors [17].
This means the degenerate features form lines in 2D tensor fields.
In fact, we found the degenerate tensors form the boundary between
the real and the complex domains.

Thus, unlike symmetric tensors, interpretation of the degener-
ate features is very different. That is, while the eigenvectors are
indeterminate for double degenerate symmetric tensors, the same
eigenvectors are determinate (and aligned) for double degenerate
general tensors! Also note that in the real domain, the tensor has
a stretching effect. While in the complex domain, the tensor has a
swirling effect. This can be seen in Figure 1 which is the first such
visualization of general tensor topology that we are aware of.

Figure 1: Composite vectors of a randomly generated asymmetric
2D tensor field. Warm color shows the complex domain and cool
color shows the real domain. The tensors in the real domain are
denoted by the two eigenvectors, while those in the complex domain
are represented by the major dual-eigenvector J1. The warmer the
color, the closer the flow forms a perfectly circular path. The deep
red regions are where the critical points can be found. The patterns
appear to be similar to wedge and trisector points, but their behavior
and interpretation are entirely different. The deep blue regions are
where one can find symmetric tensors with no rotational components.



We notice that as we approach the degenerate lines from the
real domain, the angle between the two eigenvectors got smaller
and smaller. The two eigenvectors completely coalesce and do not
form the full rank when they reach the degenerate boundary and
cross into the complex domain. We can also show (see Section
4 that these degenerate lines are no longer the critical features in
the topology of general tensor fields. Since the underlying data is
smooth, the natural question is: What happens as we transition into
the complex domain? How can we analyze and visualize the tensor
and show the continuity of the data as we cross the boundary? Be-
fore we discuss this, we first review some previous work relevant to
these questions.

3 PREVIOUS WORK

In previous work on 2D tensor topology such as [4, 12], degener-
acy in 2D symmetric tensors is defined as locations where there are
repeated eigenvalues. Because the eigenvectors are indeterminate
at these degenerate points, these are also the locations where hyper-
streamlines may intersect.

Recall that for a 2D tensor T ,

T =

(

T00 T01

T10 T11

)

(1)

the conditions for finding degenerate points in symmetric tensors
are:

T00 = T11, T01 = T10 = 0 (2)

This work was extended to 3D symmetric tensor fields [5] where
two types of degenerate points are identified: double degenerate
points and triple degenerate points, where there are two and three
repeated eigenvalues respectively. Subsequently, Zheng and Pang
[17] pointed out that double degenerate tensors are stable features
while triple degenerate points are not. Furthermore, double degen-
erate tensors form lines. More recent results [18] improved upon
the original method of extracting double degeneracies using a more
intuitive geometric formulation, and also using a tracing strategy
based on the analytical tangents along the degenerate feature lines.

4 COMPOSITE EIGENVECTORS

In this section, we introduce a methodology to visualize and ana-
lyze an asymmetric tensor field in its entirety, without the need to
decompose them into symmetric and rotational parts first. The ad-
vantage is that it focuses on the overall effect of the whole tensor
field, and reflects the continuity of the tensors throughout different
regions.

4.1 Dimensionality of Degenerate General Tensors

The definition of degenerate tensors in asymmetric tensor fields is
still the same – repeated eigenvalues. This condition is equivalent
to having the discriminant equal to zero. In a 3D symmetric tensor
field, the discriminant D3(T ) is always non-negative.

D3(T ) = (λ1 − λ2)
2(λ2 − λ3)

2(λ3 − λ1)
2

(3)

Therefore, the degenerate tensors in a typical non-degenerate tensor
field cannot form a surface. Otherwise, there will be a sign change
between the two sides of the surface. But in a general tensor field,
there is no constraint that the discriminant must be non-negative.

The reason is that because the eigenvalues can be complex num-
bers, D3 can be negative. This fact allows us to treat the discrimi-
nant as a scalar field and therefore, the degenerate tensors are sim-
ply the isosurfaces. Intuitively, the features should form surfaces.
For degenerate 2D general tensors, the degenerate features is one
dimension less and they form lines.

4.2 Eigenvectors and Degenerate Tensors

In a symmetric tensor field, a hyperstreamline is a streamline if
we consider any group of the eigenvectors as regular vectors. The
only places where these hyperstreamlines can intersect with each
other are at the degenerate tensors, where the matrix has at least two
repeated eigenvalues. This definition can be similarly extended into
the asymmetric tensors. However, the degenerate tensor are curves
rather than isolated points. It is not easy to naturally extend the
concept of hyperstreamlines into visualizing such datasets, since
the eigenvalues can be complex. Therefore it is natural to ask: What
is the extension of hyperstreamlines into asymmetric tensor fields?
Are degenerate tensors still the critical features?

For any 2D real asymmetric tensor, the two eigenvalues can ei-
ther be two real or two complex conjugate eigenvalues. Therefore
the tensor field is divided into the real and the complex domains. It
is not difficult to develop techniques to analyze these two domains
independently, but the key to a good method is to unite the visu-
alization throughout the entire tensor field, since the data are con-
tinuous by its nature. From linear algebra, we know the quadratic
discriminant of a 2D matrix is:

D2 = (λ1 − λ2)
2 = (T11 − T22)

2 + 4T12T21 (4)

D2 > 0 if the two eigenvalues are both real numbers, and D2 <
0 if the two eigenvalues are conjugate conjugate numbers. When
D2 = 0, the two eigenvalues are equal. This result clearly points
out that the boundary between the real and the complex domain are
D2 = 0, where the matrix has two repeated eigenvalues, i.e., a
degenerate tensor.

When we start introducing the asymmetric part into a tensor
field, not only do we change degenerate tensors into lines, but the
role of degenerate tensors is significantly changed. In a symmetric
tensor field, degenerate tensors are the critical feature where hyper-
streamlines can intersect; in an asymmetric tensor field, degenerate
tensors form the boundary between the real and the complex do-
main.

The eigenvectors around degenerate tensors also have significant
changes. In a symmetric degenerate tensor, the eigenvectors asso-
ciated with the repeated eigenvalues are indeterminate. Any vector
in the plane spanned by two valid eigenvectors is another valid one.
However, in an asymmetric degenerate tensor, the two eigenvectors
completely overlap with each other, unless the tensor is symmetric,
in which case, the eigenvectors are indeterminate. The eigenvector
matrix do not span the full rank. In an asymmetric tensor field, if
we approach the degenerate curve from the real side, we will see the
two eigenvectors get closer and closer to each other. When they fi-
nally reach the boundary between the real and the complex domain,
they completely overlap with each other. As we step into the com-
plex domain, the data change smoothly even at the boundary be-
tween the real and the complex domain. So, the eigenvectors must
change into another form that is still continuous with the coalesced
eigenvectors at the boundary. The answer is the dual-eigenvector
defined for an asymmetric tensor.

4.3 Dual-Eigenvectors

If a real matrix has a pair of complex conjugate eigenvalues, their
associated eigenvectors E1 and E2 must also be complex conju-
gates. They are usually written as,



Ek =
−→
A ± i

−→
B , k = 1, 2 (5)

Therefore, the complex conjugate eigenvectors can be expressed

by a pair of real vectors (
−→
A ,

−→
B ). However, such expression is not

unique. If
−→
A ± i

−→
B is a pair of valid eigenvectors, then multiplying

them with any complex number yields another valid pair.

−→
A ∗ + i

−→
B ∗

= (cos(α) + i sin(α)) (
−→
A + i

−→
B )

=
(

cos(α)
−→
A − sin(α)

−→
B

)

+ i
(

sin(α)
−→
A + cos(α)

−→
B

)

(6)

In other words, if (
−→
A ,

−→
B ) is valid, then (

−→
A ∗,

−→
B ∗) =

((

cos(α)
−→
A − sin(α)

−→
B

)

,
(

sin(α)
−→
A + cos(α)

−→
B

))

is also

valid for any α. So which (
−→
A ∗,

−→
B ∗) is the most natural one? In

this paper, we choose the (
−→
A ∗,

−→
B ∗) that are perpendicular to each

other, i.e.,
−→
A ∗ · −→B ∗ = 0. This leads to,

(

cos(α)
−→
A − sin(α)

−→
B

)

·
(

sin(α)
−→
A + cos(α)

−→
B

)

= 0

=⇒ −→
A · −→B tan(α)2 +

(

‖B‖2 − ‖A‖2
)

tan(α) −−→
A · −→B = 0

(7)

Obviously, this quadratic equation have two distinct solutions in
most cases. These two solutions are usually perpendicular to each
other, which represents the two different ways to align them. To
distinguish between these two solutions, we arbitrarily choose the

one where ‖−→A ∗‖ ≥ ‖−→B ∗‖. For a pair of valid (
−→
A ,

−→
B ) that is

also perpendicular to each other, we refer to the pair as the natural

basis of the asymmetric tensor. However, when
−→
A · −→B = 0 and

‖−→A ‖ = ‖−→B ‖ hold at the same time, any real α yields a valid and
natural basis. We refer to such points as circular points. This is
similar to the degenerate symmetric tensor in that all vectors are
valid eigenvectors. In fact, we can show later that such circular
points are exactly the critical features of the topology of asymmetric
tensor field. We are also going to show that the natural basis is
closely related to the flow pattern contained in the Jacobian matrix
around a critical point.

For a 2 × 2 matrix with two complex conjugate eigenvalues, we

define its dual-eigenvectors as its natural basis (
−→
A ,

−→
B ). Since we

usually choose ‖−→A ‖ ≥ ‖−→B ‖,
−→
A is referred as the major dual-

eigenvector and
−→
B is referred as the minor dual-eigenvector.

4.4 Analysis of 2D Linear Flows

Here, we discuss some important properties of 2D linear flows and
reveal its connection to dual-eigenvectors. Given a 2D tensor T as a
Jacobian around a critical point, its trace is the rate of flow coming
out of it. To concentrate on its flow property, we first make it trace-
less by removing the average away from its diagonal components,
and calculate its deviator Dv . Then, we calculate its singular value
decomposition (SVD): Dv = U · D · V T , where U and V are two
orthogonal matrices and D is a diagonal matrix with non-negative
components. Without loss of generality, We define the two column
vectors in U as J1 and J2. We choose them in such a way that their
associated singular values of the deviator Dv satisfy: µ1 ≥ µ2. Al-
though this definition and calculation seems arbitrary, we can show
that it has many interesting properties.

First of all, in the complex domain, the flow is either a swirling
source or a swirling sink. That means the tendency is either to flow

out or flow in. With the average of the diagonal components re-
moved, the flow is completely closed. Any particle in this flow will
follow a closed elliptical path. We can show that J1 and J2 are the
long and the short axes of this ellipse, and the ratio between µ2 and
µ1 represents its eccentricity. Therefore, they are a good represen-
tation of the flow in the complex domain. Most importantly, we
can show

(√
µ1J1,

√
µ2J2

)

form the natural basis of the asymmet-
ric 2D tensor T . They are the simply the dual-eigenvectors after
normalization.

Secondly, in the real domain, we can show that J1 and J2 are the
angular bisectors of the true eigenvectors, E1 and E2, of T . That
is why we call them dual-eigenvectors. Furthermore, J1 equally
bisects the smaller angle between E1 and E2, while J2 bisects the
larger angle between them. If we approach the degenerate curve
from the real side, E1 and E2 get closer and closer to each other
until finally, they also collapse into their angular bisector: J1. Since
the definition of J1 is continuous across the degenerate lines, it
means that the eigenvectors E1 and E2 in the real domain is con-
tinuous with the dual-eigenvector J1.

4.5 Eigenvectors and Dual-Eigenvectors

We can prove that the relationship between the eigenvectors and
the dual-eigenvectors, ignoring scaling, can be summarized as
follows: In the real domain, E1 =

√
µ1J1 +

√
µ2J2, E2 =√

µ1J1 − √
µ2J2; and in the complex domain, E1 =

√
µ1J1 +

i
√

µ2J2, E2 =
√

µ1J1 − i
√

µ2J2. These show that there is in-
deed a close relationship between the eigenvectors and their dual-
eigenvectors. Therefore, we use the eigenvectors to represent the
tensor in the real domain, and use the dual-eigenvectors to repre-
sent the tensor in the complex domain.

Vi(X) =

{

Ei, i ∈ {1, 2}, if T(X) is in real domain
J1, if T(X) is in complex domain

(8)

From our analysis and Equation 8, we know V1 and V2 are both
continuous vector fields. More importantly, they are also continu-
ous through the boundary between the real and complex domains at
the degenerate curves. Just as the topology of a symmetric tensor
field is defined over its eigenvectors, we define the topology of a
general tensor field over these composite vector fields V1 and V2.
It is clear that the eigenvectors do not have critical feature in the
real domain, exactly the reason why we choose the eigenvectors
over the dual-eigenvectors in this case. We can show that the crit-
ical features of Vi are only found in the complex domain and are
characterized as flows with perfectly circular path, i.e., they are the
circular points given in the previous section. We can also show the
criteria to find such points are as follows:

T00 = T11, T01 + T10 = 0 (9)

Since J1 and J2 are also the eigenvectors of DvDT
v , where Dv

is the traceless deviator of T , the topological analysis around such
critical features are also similar. The major dual-eigenvector J1

also forms trisectors and wedges points. Although they come from
very different definitions, it is interesting to compare this definition
to the criterion of locating the degenerate points in a real symmetric
tensor field,

T00 = T11, T01 = T10 = 0 (10)

From these two equations, it is easy to see that a degenerate sym-
metric tensor is automatically a circular tensor. The streamlines



following the composite eigenvectors can only intersect with each
others at these circular points. This is very important in understand-
ing the relationship between asymmetric and symmetric tensor field
topology. If we start with a general tensor field and gradually re-
duce its anti-symmetric part, the critical features are contained in
the complex domain. As the tensor field becomes more and more
symmetric, the complex domain becomes smaller and smaller. But
the critical points, i.e., the circular points, are still contained in such
domains. Finally, the complex domains with the degenerate bound-
ary and the circular points contained within the region shrink to in-
dividual degenerate points. The degenerate point can be considered
as a “black hole” that eats up the old space and the “singularity”.

4.6 Circular Discriminant

Equation 9 gives the criterion that we can use to identify the circular
points in asymmetric tensor fields. In this section, we show that
although our topological analysis on asymmetric tensor fields start
with completely different origins, they have some very interesting
connections with the established symmetric tensor topology.

If T is symmetric, Equation 2 can also be written as the quadratic
discriminant as in Equation 4. D2 is always non-negative for sym-
metric tensors. It equals to zero if and only if T is degenerate.

If T is asymmetric, we can define a similar scalar, circular dis-
criminant, that is also non-negative all the time, but equals to zero
if and only if T is a critical feature, i.e., the circular point.

∆2 = (T11 − T22)
2 + (T12 + T21)

2
(11)

We note that ∆2 as defined in Equation 11, is rotational invariant
for any 2 × 2 general matrix T . If T is in the real domain, then

∆2 =
(λ1 − λ2)

2

sin(θ)2
(12)

where θ is the angle between the two eigenvectors E1 and E2. Such
relationship clearly explains why the regular discriminant D2 is
equal to the circular discriminant ∆2 when T is symmetric. This
is because their only difference is the denominator sin(θ)2, and θ
is 90◦ for symmetric tensors. At first glance, Equation 12 seems to
point out that ∆2 would become zeros when λ1 = λ2. This con-
flicts with our previous conclusion that ∆2 equals to zero only at
the circular points, not the degenerate curves. This is because in
an asymmetric tensor field, when λ1 = λ2, the two eigenvectors
coalesce and therefore θ = 0. This makes Equation 12 break down
at the degenerate boundary curve. But, the equivalent Equation 11
still holds even at such places.

If T is in the complex domain, then

∆2 =
−(λ1 − λ2)

2

tan(θ)2
(13)

Note that λ1 and λ2 are the complex conjugate eigenvalues,
and the square of their difference has a negative sign. θ is de-
fined as the angle between the two eigenvectors in its natural basis.
tan(θ/2) = ‖B‖/‖A‖. Similarly, Equation 13 also breaks down at
the degenerate curves, but its limit when approaching this boundary
can be computed through the equivalent Equation 11. It also points
out ∆2 is equal to zero when θ = 90◦, which leads to ‖A‖ = ‖B‖,
i.e., the very definition of circular point.

5 DISTANCE MEASURE FOR GENERAL TENSORS

In this section, we propose a new scheme to measure the distance
between two general matrices that are Jacobians of linear flow. Pre-
vious works such as earth mover’s distance [10] used in flow feature

comparisons only considered eigenvalues and ignored the informa-
tion of the eigenvectors for 2D matrices. Not only is it difficult to
extend the measure into 3D, but it is also possible to obtain a zero
distance measure from two different flow patterns resulting in faulty
comparison of flow features. Figure 2 shows several linear vector
field that has zero earth mover’s distance. From left to right, their

Jacobians are

(

1 0
0 1

)

,

(

1 2
0 1

)

and

(

1 −2
0 1

)

. These

three Jacobians are all upper triangular matrices, therefore their
eigenvalues are simply their diagonal components (1, 1). Because
their eigenvalues are the same, their distances are zeros and consid-
ered equivalent by earth mover’s distance. But their visual differ-
ence can hardly be ingored.

Aside from feature comparisons, a properly justified distance
measure is also useful in other situations. For example, Ye et al.
[15] recently needed a distance measure between two Jacobian ma-
trices of 3D flows in order to vary the seeding template used to
generate streamlines.

One very important design property of such a distance measure
is that it must be invariant to rotations. A matrix M1 and itself
after any orthogonal transformation is considered equivalent and
their distance must be zero. If all such equivalent matrices form an
object. A natural way to define the distance between two matrices
is the distance between their equivalent group, i.e., their minimal
distance after any rotations. For any two matrices M1 and M2, we
have,

D(M1, M2) = min
R

‖M1 − RT M2R‖2, such that RT R = I

(14)

Note that such a distance automatically combines the eigen-
vectors into account and is independent of rotation as well. Any
rotation on M1 and M2 does not change the distance measure
D(M1, M2) at all. To ignore the scaling effect, one can normal-
ize M1 and M2 before computing their distance. The first order
condition for an optimal R for an N × N general matrices is:

Theorem 5.1. If M1, M2 is optimally aligned, then [MT
1 , M2]

must be a symmetric matrix.

where the notation [A, B] = AB−BA is the commutator between
the two matrices A and B. This theorem shows that the first-order
condition for R to be optimal is that [MT

1 , RT M2R] is a symmetric
matrix. A proof of this theorem is provided in the Appendix.

Solving such a system analytically for general N×N matrices is
not simple. But it can be solved completely in some special cases.
Two symmetric matrices S1 and S2 are said to be properly aligned
if their eigenvectors are the same and the associated eigenvalues are
ordered in the same way. Two general matrices M1 and M2 are said
to be optimally aligned if D(M1, M2) = ‖M1 − M2‖2.

(1) For 2 × 2 general tensors, it can be shown that M1 and M2

are optimally aligned if their corresponding symmetric parts S1 and
S2 are properly aligned.

(2) For N ×N general tensors, if M1 is symmetric, then M1 and
M2 are optimally aligned if M1 and the symmetric part of M2, S2,
are properly aligned.

For matrices with a dimension higher than 2 and in its most gen-
eral form, we may have to resort to numerical methods. In our ex-
periments, a simple gradient descent or Newton-Raphson algorithm
can achieve good convergence speed.

When dealing with 2× 2 matrices, we need to add the following
constraint to Equation 14: det(R) = 1. This makes the equivalent
matrices limited to only the regular right hand coordinate system.
With this additional constraint, we can differentiate left vortices
from right vortices. Otherwise, with Equation 14 alone, the vector
fields in Figure 2(b) and Figure 2(c) are considered the same. Note



(a) Isotropic Sink (b) Clockwise Vortex (c) Counter-Clockwise Vortex

Figure 2: Three linear flow field that have the same eigenvalues. Therefore, the earth mover’s distance between them are zeros.

that the need for the additional constraint only exists for matrices
with even number of dimensions. For matrices with odd number of
dimensions such as: 3 × 3 matrices, such constraint does not make
any difference.

6 IMPLEMENTATION ISSUES

In this section, we discuss the computational issues with regards to
obtaining the minimal distance between two Jacobian matrices.

6.1 Numerical Methods for Minimizing Distance

Equation 14 defines our distance to measure the difference between
two Jacobian matrices. Due to the simplicity of this definition, it
can be easily extended into higher dimensions. However, we can
only solve this minimization problem analytical when (i) the matri-
ces are 2 × 2; (ii) one of the matrices is symmetric.

For 3 × 3 Jacobians in 3D flow, we have to resort to numeri-
cal method. In our implementation, we use both gradient descent
and the Newton-Raphson algorithm to iteratively update R. For
the starting point, we choose R that properly aligns the symmetric
parts of the two matrices M1 and M2. If the matrices are 2 × 2
or one of them is symmetric, such R can be proven to be optimal.
In more general cases, we have to further update its values to the
global minimum.

In this constrained optimization problem, our free variables are
the three degrees of freedoms in choosing R. However, it is not
simple to develop a stable iterative method based on implicit con-
straints. Our solution is to first parameterize R. There are many
ways to represent an orthogonal matrix R. Here, we choose to rep-
resent R = exp(K) where K is an anti-symmetric matrix and exp
is the matrix exponential [1]. It can be proven that this is equivalent
to saying R is orthonormal. This property ensures that R is always
in the neighborhood of I . An interesting property is of exp(K) in
3×3 cases is that it can be represented as a rotation around the axis−−−−−−−−−−−→
(K12, K20, K01) for an angle of

√

K2
01 + K2

12 + K2
02.

The second issue is to take first and second order derivatives of
D = ‖M1 − exp(−K)M2,n exp(K)‖2 with respect to the three
free variables in K at K = 0. Where M2,n is the nth iteration of
M2. This is tedious if we choose Euler angles as R’s parameters.
But it is very simple if we represent R in this matrix exponential
form. Note that exp(K) = I + K + K2/2 + O(K3). we can also
represent D as,

D = ‖M1 − (I − K + K2/2)M2,n(I + K + K2/2) + O(K3)‖2

(15)

It is much easier to evaluate different orders of gradients of D
with respect to K in this form. After we obtain the new K us-
ing gradient descent or Newton-Raphson algorithm, we can eas-
ily get R = exp(K) using the formula for rotation along an
axis. It is worth noting that we reset R to the identity matrix
at every step, after assigning the previous R to M2: M2,n+1 =
exp(−K)M2,n exp(K) and K = 0. The Newton-Raphson ver-
sion of this method usually converges within three to six iterations.

7 RESULTS

In this section, we apply the techniques we introduced in this paper
on several datasets.

We choose randomly generated tensor fields for its flexibility to
generate many different datasets and great coverage of topological
information. An asymmetric tensor is randomly generated at each
grid point of a 4 × 4 coarse grid. Then, they are interpolated into a
30 × 30 fine grid using high-order interpolation to obtain a smooth
data field. After this step, we use bilinear interpolation to obtain the
tensor components within each cell.

Figure 3 shows results in such datasets using LIC to represent the
composite eigenvectors. We choose two sets of tensor fields. For
each set, we show the results from both the major and the minor
composite eigenvectors. The colors are mapped to the distance of
a tensor from being symmetric. The warmer the color, the more
the flow pattern forms a circular path. The deep red is the critical
feature of asymmetric tensor topology where we can find circular
points. The deep blue regions are where we can find the symmetric
tensors.

Note that for both the major and the minor composite eigenvec-
tors, they are both continuous to the major dual-eigenvector at the
degenerate curves. The major and the minor composite eigenvec-
tors are the same within the complex domain, since they are both
the major dual-eigenvectors in the complex domain. We can imag-
ine that the minor dual-eigenvectors are on the axis that is perpen-
dicular to the page. However, the major and the minor composite
eigenvectors become more and more different when they are deeper
into the real domain. When they reach the blue region i.e., the sym-
metric tensors, they are perpendicular to each other.

Figure 4 is a 3D multi-value multivariate data set. It covers a
region from the Massachusetts Bay to the Cape Cod area off the
U.S. East coast. Over 200 physical and bio-geochemical variables
are measured. Forecasts and simulations were conducted for the
period from August 17 − − October 5, 1998. The area of study in
the Massachusetts Bay was divided into a 53 × 90 grid, and there
are 600 values about each variable at each location in the grid. We
examined a 2D slice of single realization of the flow velocity in this



data set, which we refer to as the Massachusetts Bay data
set. Warmer colors in this figure corresponds to complex domains,
which has more swirling behavior; cooler colors mean the real do-
main, which has more stretching behavior.

8 CONCLUSION AND FUTURE WORK

In summary, the critical features in general tensor topology are not
degenerate tensors any more, they are defined by the topology on
the vector field V1 and V2, and characterized by Equation 9.

For 2D asymmetric tensor fields, our next task is to develop al-
gorithms to extract the topology described above. The visualiza-
tion should also encode information that are ignored above, such
as the average of the diagonal components which shows whether
the direction the particle is flowing in or out. We plan to get user
evaluation and feedback from both flow and tensor communities.

Ultimately, we plan to extend this work to 3D general tensors.
From the simple relationship between the eigenvectors and their
dual-eigenvectors, it is possible to extend the ideas into 3D. But
how to locate them in a numerically stable and efficient manner is
still an open problem. Our research experience shows that it will
be a very difficult problem. But the outcome is also very reward-
ing, since it automatically combines the flow features scientists and
engineers are interested in from a general tensor field.
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A PROOF OF THEOREM 5.1

Theorem A.1. If M1, M2 are optimally aligned, then [MT
1 , M2]

must be a symmetric matrix.

Proof. Let us consider all the paths of R(t) such that R(t)T R(t) =
I and R(0) = I . We know that the tangent space for orthog-
onal matrices at the identity matrix is the space of all the anti-
symmetric matrices: R′(0) = K, where K can take the value of
any anti-symmetric matrix. We define the distance between M1 and
RT M2R as,

D(t) = ‖M1 − RT M2R‖2

= tr
((

MT
1 − RT MT

2 R
) (

M1 − RT M2R
))

= ‖M1‖2 + ‖M2‖2 − 2tr
(

MT
1 RT M2R

)

(16)

Define F (t) = tr
(

MT
1 RT M2R

)

. It is obvious that the mini-
mum of D(t) is the maximum of F (t). Therefore,

F ′(0) = tr
(

MT
1 RT M2R

)′

= tr
(

MT
1 R′T M2 + MT

1 M2R
′
)

= tr
(

MT
1 KT M2 + MT

1 M2K
)

= −tr
(

MT
1 KM2

)

+ tr
(

MT
1 M2K

)

= −tr
(

M2M
T
1 K

)

+ tr
(

MT
1 M2K

)

= tr
((

MT
1 M2 − M2M

T
1

)

K
)

= 0

(17)

Here we use the important property tr(AB) = tr(BA). We

define H = [MT
1 M2] = MT

1 M2 − M2M
T
1 . Because M1 and

M2 are optimally aligned, F ′(0) = tr(HK) = 0 must hold for all
anti-symmetric K.

F ′(0) = tr(HK) =
∑

i
(HK)ii =

∑

i,j
HijKji

=
∑

i<j
(Hij − Hji)Kji = 0

(18)

Since Kji are all free variables, this implies that Hij − Hji =
0 must hold for all i < j. In other words, H = [MT

1 , M2] =
MT

1 M2 − M2M
T
1 is a symmetric matrix.
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(a) First Set Major (b) First Set Minor

(c) Second Set Major (d) Second Set Minor

Figure 3: Two sets of LIC images showing the composite eigenvectors of randomly generated asymmetric tensor fields.



(a) Massachusetts Bay Major (b) Massachusetts Bay Minor

Figure 4: Two sets of LIC images showing the composite eigenvectors of the Massachusetts Bay data set.


