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The study of stress and strains in soils and structures
(solids) help us gain a better understanding of events such
as failure of bridges, dams and buildings, or accumulated
stresses and strains in geological subduction zones that could
trigger earthquakes and subsequently tsunamis. In such do-
mains, the key feature of interest is the location and orien-
tation of maximal shearing planes. This paper describes a
method that highlights this feature in stress tensor fields.
It uses a plane-in-a-box glyph which provides a global per-
spective of shearing planes based on local analysis of tensors.
The analysis can be performed over the entire domain, or
the user can interactively specify where to introduce these
glyphs. Alternatively, they can also be placed depending
on the threshold level of several physical relevant parame-
ters such as double couple and compensated linear vector
dipole. Both methods are tested on stress tensor fields from
geomechanics.
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1 INTRODUCTION

One of the important tensors of interest in geomechanics
are stress tensors. These are second order symmetric ten-
sors with six independent values. While there are a few
techniques already available for visualizing symmetric tensor
fields, not every tensor visualization technique is suitable or
helpful for every type of tensor and its domain of use. Thus,
we first explore the tensor types, their domains, the qualities
and features of interest, and commonalities and differences
in the analysis and visualization techniques.

Based on our study, we report on our efforts to address
a need in seismology and geomechanics. Both disciplines
try to discover where the earth or material will fracture and
shift, or describe such an event that has occurred. Towards
this end, we treat geomechanical stress tensors as seismic
or acoustic moment tensors, using standard analysis to find
features that suggest cracking, shear fracture or earth flow.
Moment tensor analysis provides scalar quantities that de-
scribe these stress features at each sample point. We intro-
duce a simple plane-in-a-box glyph, to illustrate the plane
of causative forces. Just as 2D vector fields can be visual-
ized with arrow glyphs, plane-in-a-box glyphs seem to be a
natural extension for visualizing the next higher order ten-
sor in 3D. A plane in a 3D volume portrays two out of the
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three orthogonal eigenvectors in a symmetric stress tensor,
while the normal to the plane implies the third. The plane
is spanned by the major and medium eigenvectors based on
their absolute eigenvalues. Depending on the seismic fea-
ture in a moment tensor, this can indicate the direction of
cracking, particle motion, or simply the causative forces. In
seismology, the fault plane will lie roughly 45 degrees off
from the planes of major stress. It also provides a glyph
that will indicate directions in line with a standard tensor
ellipsoid. The orientation of the plane will be very similar
to a stress glyph with high planar isotropy. A stress glyph
with high linear anisotropy would be like a line on the plane
glyph. Thus, an idea similar to the plane-in-a-box glyph is
the use of flat, planar but transparent disks which are then
volume rendered [25]. However, our technique is not only
much cheaper, but highly interactive. It also shows global
trends such as regions where stresses lie neatly in parallel
lines or clusters of noisy chaos.

When using glyphs for visualization, a main concern is
clutter and occlusion. Occlusion is view dependent and oc-
curs when foreground objects, small or large, obscure back-
ground objects. Clutter, on the other hand, is the gen-
eral sense of disorder. Compared to tensor ellipsoids, tensor
boxes, or superquadric tensor glyphs [17] the plane-in-a-box
glyphs are much simpler and do not show the relative mag-
nitudes of the eigenvalues. Instead, they simply show the
orientation of the two eigenvectors associated with the abso-
lute values of the two largest eigenvalues. This is sufficient
in showing the important aspects of geomechanic stress ten-
sors and because the glyphs do not take up as much volume,
they also help reduce occlusion and clutter. The planes
themselves can also be scaled so that they only span half
(or less) of the distance to their nearest neighbors. In this
way, we further reduce the amount of occlusion in the im-
ages. Furthermore, we allow the user to set feature-based
thresholding constraints for each feature (and invert them as
well). Finally, we provide user-defined feature-based opac-
ity functions. Scaled glyphs which show magnitude are less
important since such scalar features can be illustrated and
highlighted through color, opacity and thresholding.

2 SECOND ORDER SYMMETRIC TENSOR

In preview, we briefly review second order symmetric tensors
used to represent stress. Second order symmetric tensors
are described mathematically using a 3x3 matrix where the
off diagonal components are equal so s;; = sji,9 # j as
follows:

S = 812 S22 823 (1)

In a stress tensor, the three diagonal components represent
normal stress, and the off diagonal elements comprise shear
stresses.



A symmetric tensor S can be decomposed into two ma-
trices M and T such that S = TMTT, where T is the col-
umn ordered matrix of orthogonal eigenvectors, and M is
the diagonal matrix with eigenvalues corresponding to the
eigenvectors in the columns of 7T'.

Since the symmetric tensor is assumed to lie on cartesian
coordinates, the interpretation of 7T is the transformation
needed to reorient S such the shear components are zero.
Note that for stress tensors, the eigenvalues can be both pos-
itive and negative. Positive eigenvalues indicate compression
while negative eigenvalues indicate tensile forces.

Concrete structures can withstand large amounts of com-
pression, but are very weak under tensile forcing. Likewise,
in soils, places where there are large changes from tensile to
compressive forces may indicate potential cracks and fault
lines. More quantitative measures that are of primary inter-
est to geomechanics are described in Section 3.

3 STRESS TENSORS IN VARIOUS DOMAINS

This paper focuses on visualization techniques for second or-
der symmetric tensors representing stress in soils and struc-
tures. Since symmetric tensors can represent a plethora of
physical phenomena,it is reasonable to ask whether the tech-
niques from one domain are applicable to stress tensors from
other domains as well.

3.1 Fluid Stress Tensors

Fluid flow research encompasses a whole range of disciplines
from ocean circulation and weather forecasting to aeronau-
tics. Analysis includes examining the velocity gradient ten-
sor, which can in turn be decomposed into a rotational tensor
and a rate of strain tensor. Another important quantity is
the stress tensor which measures how a fluid element may
deform under stress. The fluid stress tensor can be decom-
posed into a pressure term P leading to a change in volume
but not in shape, and a deviatoric tensor 7 which produces
a change in shape.

The fluid stress tensor is a symmetric second order tensor
which can be visualized using a number of techniques. Typ-
ically, either the absolute values of the eigenvalues are first
sorted such that |Asz| > |A2] > |A1], or the signed eigenvalues
are sorted such that A3 > A2 > X\1. That is, the tensor field
is separated into three orthogonal vector fields correspond-
ing to each of the sorted eigenvalues. One related feature
measure is the eigen difference [27]. It is a scalar K defined
as:

K =2Xy — (M + X3) (2)

where K is a positive value for planar degenerate tensors
(identical major and medium eigenvectors), and a negative
value for linear degenerate tensors (identical medium and
minor eigenvectors). We used this quantity for glyph color
and drawing constraints.

A popular method to visualize second order tensors is with
hyperstreamlines [6]. While this technique is a very intuitive
extension of streamlines to eigenvector fields and provides a
continuous representation of the eigenvector fields, it does
have some drawbacks. First, because of the visual clutter
and occlusion, typically only one eigenvector field is visual-
ized at a time thereby only providing a partial representa-
tion of the tensor field. Secondly, it is generally impossible
to sort the eigenvalues in a consistent and continuous fash-
ion [27] and hence the hyperstreamlines, while continuous,
may exhibit sudden changes in directions.

Another way of visualizing these tensors is with glyphs
that are placed at discrete locations in the field. There are
a number of glyphs that have been designed to date. A re-
cent study by Hashash et al. [10] evaluated several glyphs
in their ability to show certain physical properties. Among
the glyphs included in the study are: (i) Lamé stress ellip-
soid which is a glyph where its three axes are defined by
the absolute magnitudes of the principal stresses; (ii) Haber
glyph which consists of a cylindrical rod through an ellip-
tical disk. The half length of the rod represents the mag-
nitude of the major principal stress, while the shape of the
disk is controlled by the magnitudes of the median and mi-
nor stresses; (iii) Cauchy’s stress quadric glyph which uses
the tensor components in a quadric surface equation such
that the glyph is oriented in the principal directions; and
(iv) Reynolds stress glyph which is defined such that the
distance from the origin of the glyph to any point on its
surface is the magnitude of normal stress in that direction.
This glyph is used to gain insights from turbulence and stress
measurements in 3D flows.

Aside from the consideration of what physical properties
are encoded in the design of these glyphs, a common trait
among their usage is the question of scale and position. That
is, how large should the glyphs be, and how dense and where
should they be placed. The glyph placement is of itself a
research problem [24]. In this paper, we use a combination of
transparency, user interaction, and filtering by the physical
properties to place and render our plane-in-a-box glyphs.

3.2 Diffusion MRI Tensors

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)
describe diffusion of water molecules through tissue. Ac-
cording to Kindlmann and Weinstein [18], the key feature of
interest is the anisotropic motion of water molecules. They
note that with brain scans, doctors wish to visualize white
matter, the fibrous structure which connects major regions
of the brain. Westin, et al. decomposed MRI diffusion ten-
sors and correlated linear anisotropy with the major white
matter tracts [26]. An important difference between the dif-
fusion tensors and the fluid stress tensors is that the diffusion
tensors are positive definite with positive eigenvalues.

A diffusion tensor is classified as being isotropic where
A1 ™~ A2 ~ As, planar anisotropic where A1 ~ Ao > A3, or
linear anisotropic where A1 > A2 ~ A3. The degree of each
case is determined as follows:

A1 —A2 2(A2—A3) 33
A1t+A2+As A1t+A2+As A1t+A2+As

(linear case) (planar case) (isotropic case)

A key difference between diffusion tensors and fluid stress
tensors is that diffusion tensors are used to reconstruct the
white matter structures which are characterized by chains
of tensors with high linear anisotropy. On the other hand,
fluid stress tensors are used to learn about the local defor-
mation and volume change of a fluid element. Similarly,
geomechanics stress tensors are quite similar to fluid stress
tensors minus turbulence. As such, the focus of stress ten-
sors is on shearing deformations of the tensors. Hence, the
visualization techniques developed for DT-MRI such as trac-
tography and fiber tracking, volume rendering [18], or glyphs
[20, 17] may not be the best methods to visualize geomechan-
ics stress tensors.



3.3 Stresses in Geomaterial Solid

Geomechanics uses stress tensors to understand the behav-
ior of soil and objects embedded in the soil as support for
structural elements above (i.e. concrete piles for supporting
buildings, bridges, tanks...). Features of interest are, for ex-
ample, zones with positive stress in piles (tension resulting
in cracking of concrete) and zones with large shear stresses in
soil (shear failure). Concrete and soils can withstand large
compressive forces but fail under tension or in shear (i.e.
[13, 14, 11, 15]). Critical features of stress tensor in solids
made of geomaterials are zones of sign changes (switch from
compressive to tensile behavior resulting in tensile failure)
and zones of large shear stresses (resulting in shear failure
and possible large shear deformations). Both critical fea-
tures are usually present close to the (stiff, concrete) pile
— (soft surrounding) soil, but can happen anywhere in the
solid.

Earlier work on visualizing stresses in geomaterial solid
explored the use of hedgehog glyphs, hyperstreamlines and
hyperstreamsurfaces for exploring data sets [12]. Hedgehogs
where found inadequate to easily understand the contents of
the tensor field. Hyperstreamlines and hyperstreamsurfaces
were more powerful but required separate visuals for each of
the three principal stresses.

3.4 Seismic Moment Tensors

Dreger at al. state that the seismic moment tensor M;;
provides a general representation of the seismic source [7].
Seismic moment tensors are a variety of stress tensor for an
elastic substance, similar to stress tensors for geomechanics.
However, they differ in a couple of very important ways.

Seismic moment tensors or acoustic emission moment ten-
sors are created from a measured event such as an earthquake
or cracking material. Sound waves are emitted at the event
and can be measured. Thus, one major difference is that mo-
ment tensors represent a strictly elastodynamic source [16].
Second, in geomechanics, a stress tensor relates to forces ap-
plied on the exterior surface of a volume. Moment tensors
instead relate to forces that cause displacement across an in-
ternal surface, where the internal surface represents a buried
fault [1].

Dreger et al. note that M;; is commonly decomposed
into isotropic, double couple (DC) and compensated linear
vector dipole (CLVD) components, where each of the com-
ponents of the moment tensor decomposition is represented
as a percentage of the total [7, 19, 16].

3.4.1 [Isotropic and Deviatoric Components

A diagonalized moment tensor can be further decomposed
into isotropic and deviatoric components. A purely isotropic
tensor is characterized by three equal eigenvalues. The
isotropy in a moment tensor represents a change in volume.
Pure isotropy in a moment tensor is comparable to an ideal
explosion (positive eigenvalues) or implosion (negative eigen-
values) [8].

The isotropic portion of both general and moment stress
tensors is the identity matrix scaled by the mean of the three
eigenvalues. The deviatoric component is the remainder of
the original matrix after the isotropic component has been
removed.

Below is the mathematical notation for the isotropic and
deviatoric components of matrix M, where the trace (¢r) is
the sum of the diagonal elements and m; is m;; — tr(M)/3.

Note that the convention in this field differs from that of DT-
MRI tensors. Here, m7 has the smallest absolute magnitude
and m3 the largest.

tr(31%) 0 0 mi‘ 0 0
M= 0 i) 0 +| 0 m3 0 (3)
0 0 t’“(;”) 0 0 mj

In moment tensors, the isotropic portion represents a
change in volume. Fluid mechanics uses the additive in-
verse, —tr(M)/3, to represent pressure in a fluid at rest,
which may or may not lead to a change in volume depend-
ing on whether the fluid is compressible or not. Both differ
in usage to the DT-MRI interpretation of isotropy as a geo-
metric shape parameter.

3.4.2 Two Vector Dipoles

Moment tensor elements represent dipoles. A dipole is com-
posed of two equal and opposite vectors laying along an axis
orthogonal to both of them. The physical meaning is the
direction and angle of earth movement along opposite sides
of a fault.

According to Dreger double couple (DC) consists of two
linear vector dipoles of equal magnitude but opposite sign,
resoving shear motion on faults oriented 45 degrees to the
principal eigenvectors of M;; [7].

Compensated linear vector dipole (CLVD) refers to when
“a change in volume is compensated by particle motion in
the plane parallel to the largest stress” [8]. This may be
a mechanism for deep earthquakes [19]. CLVD is modeled
by eigenvalues proportional to 2, —1, —1, reflecting particle
motion. Figure 1 shows the failure mechanisms associated
with pure isotropy, DC, and CLVD.
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Figure 1: Failure modes for moment tensors. (1) Implosion or explo-
sion, (2) CLVD, (3) DC types.

The contribution of DC and CLVD to the deviatoric com-
ponent of a moment tensor can be calculated as follows:
For components of the diagonalized moment tensor sans
isotropy, mj, m3, mj such that

Im3| > [ma| > |mi| (4)
|mi|

F=—r (5)
[m|

Note that F'is the ratio of the smallest to largest absolutes
of the eigenvalues and we expect a value of 0.0 for pure DC
and 0.5 for pure CLVD. Assuming the deviatoric is a result
of only these two mechanisms,

Mdeviatoric =
0 0 O -1 0 O
mi(1—2F)| 0 =1 0 |+m3F| 0 —1 0] (6)
0 0 1 0 0 2



For scalar features there are two quantities:
DC =m3(1 —2F) (7)
CLVD = m3F (8)

Following Anderson and Finck [2, 8], percentage of devia-
toric that is CLVD can be calculated:

2m3 F
[2m3 F| + [m3(1 - 2F)|

(9)

The CLVD is doubled so there can be a range of 0.0 — 1.0
instead of 0.0 — 0.5. We use the percentile for culling and
coloring glyphs rather than values m3F and mj3(1 —2F) for
simplicity.

At present, seismic events are visualized with just a few
discrete glyphs. One or two beach balls describe the strike
planes and focal mechanism of a seismic event. Similarly,
civil engineers currently use a single glyph for each acous-
tic emission caused by cracking [23]. These glyphs represent
point sources where sound waves are emitted due to fracture.
In our application, we investigate the use of this decomposi-
tion at all points in a volume of stress tensors. We can only
experiment in this way because we have a simulation of the
entire stress field. With measured data, stress can only be
detected at points emitting sound. In other words, when an
earthquake occurs, multiple seismometers can pinpoint the
sound wave source and a representative moment tensor can
be deduced. However, stress anywhere other than the point
source of acoustic emission is unknown.

4 GEOMECHANICS DATA

4.1 Data Meaning

Tensor fields resulting from geomechanics computations are
mostly related to the state of stress (s;;) and strain (e;;).
Of particular importance are the stress tensors as they are
mostly used as failure indicators. A large majority of geome-
chanics theories dealing with inelastic behavior and failure of
solids are based in stress space, thus putting a strong empha-
sis on good understanding of the stress tensor field. Stress
tensor fields play a very important role in both static and
dynamic simulations. Both types of simulations also result
in large, multiple stress tensor data sets. Static simulations
will generate stress tensor fields for each incremental step.
Loads are applied in a series of increments starting with the
self weight of the material followed by the applied forces. In
dynamics, the data sets are created for each time step of the
simulation.

The geomaterials belong to the so called group of materi-
als with memory. In materials with memory, the response at
any iteration of time instance is a function of all the previ-
ous responses (behavior). The response is usually measured
through the stress field, which means that appropriate vi-
sualization tools are very important for understanding the
actual behavior of the solid or structure in question. The
particular data sets used in this paper are related to two
applied geomechanics problems. The first data set repre-
sents a finite sized model with two point loads on top, the so
called Boussinesq problem (i.e. [21]). The problem is simple
enough that the results are known in advance and represents
an excellent verification procedure. In addition, a number
of symmetry planes available in the model can be used for
verification of numerical and visualization procedures. The
second data set is from a dynamic (seismic) bridge simula-
tions. It represents a stress field from one time step of an

inelastic, dynamic simulation of a soil-foundation—structure
(SFS) bridge system [4, 3]. This data set involves large ra-
tios of stresses between stiff concrete in piles, columns and
the main structure and the soft soil beneath. In addition
to that, the main characteristics of the stress fields are not
known in advance as we use simulations to gain a better
understanding of the behavior of the SFS system and the
interactions of its components during seismic events.

4.2 Data Representation

The volume of the bridge—soil system is built from finite el-
ements. Each element has a hull of vertex nodes that may
be shared with neighboring elements. The shape of an ele-
ment need not be rectilinear. Within each element are gauss
points. That is, the gaussian method is used to locate points
that produce the most accurate integration.

As the simulation progresses, nodes move, inducing stress
at the gauss points. Hence, the stress tensor field consists of
the induced stresses at these gauss points.

5 IMPLEMENTATION

5.1 Plane-in-a-box Glyph

The plane-in-a-box glyph is quite similar to the tensor ellip-
soids for the case when there is strong planar anisotropy. We
opted for this simpler glyph since we are primarily interested
in regions characterized by high shear. In moment tensors
they are characterized by two large eigenvalues and a much
smaller minor eigenvalue, and we hypothesize that this is
also the case for geomechanical stress. Thus, mapping the
tensors to planar glyphs is quite natural. The plane contains
the two larger eigenvectors, and the plane normal implies the
minor eigenvector direction. The plane itself can also be col-
ored according to other scalar parameters of interest. This
glyph presents the same amount of relevant information us-
ing a simpler representation. Occlusion can also be reduced
by scaling the planar glyphs while maintaining the general
orientation of the plane.

The idea of plane-in-a-box is to create a plane with limited
extent at each sample point. The size of the planar glyph
is limited by a box whose edges are half the distance to
each of the neighboring points. If the point is on a face of
the volume, we simply extend it out a distance to half the
distance of the neighboring interior point.

The plane-in-a-box glyph has two requirements. First,
the sampled points must lay on a mesh, preferably a grid
(although the grid need not be regular). In either case some
connectivity among sample points is necessary. For rectilin-
ear data, we simply sort the points by the Z, Y, and X axes
during preprocessing. Once the points are read in, we can
deduce connectivity of neighboring points by checking the
next and previous row, column and slice.

We soon came to realize that finite element results need
not lie on straight lines. For these data sets we take advan-
tage of whatever regularity exists (in our case slices on the
Z plane were regular distances apart) and run Delaunay tri-
angulation on the remainder to get connectivity. For both
cases, connectivity is stored in an adjacency list.

5.1.1 Creating the Box and Finding Edge-Plane Intersec-
tions

The first step in creating glyphs is to create the box whose
edges will limit the plane. By iterating through the linked
list of rectilinear neighbors, we can determine the minimum



and maximum X,Y, and Z distances to neighbors. We halve
them and can even reduce the scale of the distance, if desired.
For Delaunay neighbors we use a slightly simpler technique.
We check the distance to each neighbor and select the one
that is closest. We halve the distance and set that as the
bounding distance along axes for which we have no rectilin-
ear distances. This gives us good guarantees against polygon
overlap although it may not be proportional to distance be-
tween points in all three directions.

Once we have the distances we set the corners of the box
using a lookup table which matches minimum or maximum
X,Y, and Z to each box corner.

The next step is to create the plane, finding which edges of
the box it intersects and where on the edge the intersection
occurs. We have a plane defined using point-normal form,
where the normal is the eigenvector corresponding to the
minor eigenvalue. We convert it to general form

Az +By+Cz+D =0 (10)

where A, B, and C are the X, Y, and Z components of the
normal respectively. With the sample point at zo, yo, 2o,

D = (=1 *xnorm[X]*xxzo) — (norm[Y] * yo) — (norm[Z] * zo)

(11)

Then, for each edge of the box, we use Bourke’s algo-

rithm [5] to find the intersection by extending the edge until
it touches the plane.

Pinte'rsect - t(P2 - Pl) (12)

where P and P are the points forming an edge of the
box. Substituting ¢(P. — P1) into our implicit plane equation
yields

A(zr+t(r2—21))+B(y1+t(y2—y1))+C (2141 (22—21))+D = 0
(13)
and solving for t gives

Axy+ By1 +Cz1 + D
A(z1 — x2) + B(y1 — y2) + C(z1 — 22)

and the intersection occurs at P; 4+ t(P2 — P1). Once we
have an intersection, if it lies on the edge between P; and P
we update the box’s edge index and store the intersection
point in its marching cubes array.

In summary, we begin by creating a box which is limited
by half the distance its neighbors. We calculate A, B, C' and
D for our plane, based on the point location and its normal.
Then we check each edge of the box to see if the plane inter-
sects it, saving the intersection point and building an edge
intersection case index. Finally, the edge intersection index
is cross—referenced to a marching cubes index.

t= (14)

5.1.2 Marching Cubes for Simple Planes on an Irregular
Grid

After extracting the intersections of the planes with the
edges of the cell containing the tensor, the next step is
the creation of the triangles that make up the plane. Our
algorithm uses a variation on the well-known Marching
Cubes [22]. Our algorithm differs in two ways:

e The index is built on edge intersections rather than
above/below an isovalue.

e The box is composed of variable-sized quadrilaterals
rather than a cube.

We deal with the first item by creating a mapping from
each of the 256 marching cubes case indices to its corre-
sponding edge index and save them in our reverse lookup
table. More specifically, we iterate through each marching
cubes triangle case array, building an active edge index. We
then made a hash table with the edge index as the key and
the marching cubes index as the value, for fast retrieval. The
hash table is used just before the call to marching cubes.

Despite our box forming hexahedron instead of a regular
cube, we have found that marching cubes works quite well.
Two facts help us. First, when we form the box around a
sample point on the plane we guarantee the box will enclose
the plane. Second, because we build the case using a plane
that spreads to the limits of the box we never see the am-
biguous marching cubes indices. Simply, since we build a
continuous surface, we don’t see holes.

However, two other types of ambiguous cases can occur.
One case is where an edge of the box lies in the plane. For
such a plane, there are an infinite number of intersection
points for the edge and the plane. Further, three edges will
claim intersection for each corner of the edge in the plane. In
this case a proper marching cubes index cannot be formed.
The second ambiguity is where the plane intersects an edge
at a box corner. As with the previous case, three edges will
claim intersection for each corner of the edge in the plane.
The simple solution is to just shift the box a tiny amount
along one axis and recalculate. We found this solution effec-
tive; we selected the first of multiple possible case indices,
and shifted the box back before building the plane’s trian-
gles.

We predicted that we would see just a few different march-
ing cubes cases as the point would sit in the middle of the
box. This soon proved wrong as the sample point may lie
almost anywhere within a skewed box.

5.2 Filtering with Physical Parameters

With the plane-in-the-box glyph, we can quickly perceive
trends such as regions of aligned stresses. However, very
little can be seen of the volume interior. It is occluded by
planes on the volume border. Moreover, simple planes do
not provide information about magnitudes of stresses and
related features.

We have provided several different scalar measures to aid
exploration of a data set, and filtering mechanisms to home
in on areas of interest in the volume. The scalar features
are: (i) signed isotropy (with both linear and log scaling),
(ii) DC, (iii) CLVD, and (iv) eigen difference [27].

The application has a menu for selecting a feature for
coloring the planes and a feature for setting plane opacity.

Since the two features, DC and CLVD, can be expressed
as percentiles they are automatically scaled from 0 to 1.
For isotropy and eigen difference, we set the zero valued
features at 0.5. We scaled cool colors (blue) below, down to
0 for negative values and hot colors (red) for positive values
scaled up to 1. Opacity can provide some filtering effect
as the lowest values are fully transparent. Medium to high
values appear more solid and their geometry is highlighted,
similar to volume rendering.

The application also has sliders for selecting a range of
values for features. For example, a user can select strictly
positive isotropy combined with high CLVD. Such combi-
nations allow users to search for domain-specific indicators.
The aforementioned, for example, can signify a crack when



Figure 2: Double point load isotropy (linear) Figure 3: Opacity filtering, isotropy color and  Figure 4: Double point load DC (CLVD is the

with arrows showing point loads opacity (log scaled)

the data set is composed of moment tensors from acoustic
emissions [8]. With thresholding, the shape of regions are
also clearly delimited. Essentially, the user can create isosur-
face and iso-volume-like selections.The surface however, is
not smooth, being composed of individually oriented planes.
Finally, the application can toggle to show the inverse of a
selected feature range, providing greater flexibility.

5.3 User Interaction

Rather than thresholding over the entire volume, a user may
wish to explore from points of interest on outwards. We pro-
vide a pointer that the user can move around the volume to
select various seed points. Then, on each iteration, neigh-
boring planes get painted. This gives an animation effect of
oriented planes growing out of the seed point. Thresholding
constraints may also be applied, as desired. For this type
of interaction, we built two data structures that save state
between animation frames. One is a draw list where each
entry refers to a sample point in the volume. This is initial-
ized to all zeros to indicate no planes should be drawn; only
non-zero entries have their planes drawn during an iteration.
The second is a queue that holds the sample point numbers
to be added to the draw list on the next iteration. In ad-
dition, the point adjacency is stored in an adjacency list,
implemented as an array of linked lists. The algorithm pro-
ceeds as a simple breadth first traversal. At first glance the
extra complexity may seem unnecessary; after all, for regu-
lar data we can simply use the stride of the length, width,
and slice of the rectilinear sorted data. However, in many
cases geomechanics data is not regular. Gauss points across
finite elements are not lined up along X and Y. We would
still like to explore a region from a selected seed point, and
breadth first traversal of the mesh works well for this.

After initialization with the user’s selected seed points, we
take each point from the queue, add it to the draw list and
check its linked list of neighbors. Here again, we depend
on having neighbor connectivity available. We do a triple
check before we consider adding a new point to the next
iteration’s queue. The sample point must meet all of the
user’s constraints, and neither the current draw list nor the
current queue may already contain it.

The data structures and process are very similar to Gib-
son’s Chainmail algorithm [9]. The Chainmail algorithm

dual and has the same appearance but with
blue instead of red)

enables fast deformation of volumetric objects, composed of
objects such as nodes and points from Finite Element analy-
sis. The analogy is that points and nodes move as if joined by
a chainlink mesh. If a node is moved beyond a constraint,
neighboring nodes will also move. Like our algorithm, on
each iteration, new candidates are queued breadth-first and
previously selected candidates are tested against the con-
straints.

6 RESULTS

We tested our application using two data sets, each of which
was a single time step in a geomechanics simulation. Both
data sets consisted of a field of stress tensors for geomechan-
ical soils and solids, as described in section 4.

The first was the Boussinesq point load, where force was
applied at two points on the top of the volume. The second
was a bridge supported by two piles in soil. In the simula-
tion, force was applied to one side of the bridge.

6.1 Boussinesq Point Load

Figure 2 shows isotropy in the double point load data set.
Linear scaling highlights the compressive and tensile forces
at the point they were applied.

The eigenvalues at these points were extremely high so the
linear scale caused the rest of the volume to appear to have
zero isotropy evenly throughout. However, when we change
to a log scale and scale the opacity as well, the variation
from cold to hot is strongly emphasized (Figure 3).

Figure 4 shows the coloring for the double couple feature.
We omitted CLVD since it is calculated as the dual of DC
and would appear as blue-green color mapping instead of
green—red. It is clear that anisotropic regions have no corre-
lation with isotropic regions, and combinations of constraints
on several types of features may lead to better understanding
of stress within a volume. For example, isotropy is largest
at the point where the load is applied (Figure 2). The DC
feature is strongest on the plane between the two opposite
loads, a very different region of the volume (Figure 4). Pos-
itive isotropy in combination with anisotropic behavior for
shear might lead to fracture.

In Figures 5 and 6, we see the results of DC thresholding.
Both figures show greater than 50% similarity to the DC



feature, but the first figure has a color representing lower
similarity overall. We found it interesting that using a lower
threshold selected the very noisy data around the points
where stress was applied. The region most closely match-
ing a DC feature was where we expected the shear to occur
— on the plane between where the two opposing forces were
applied.

Figure 5: Double Couple Figure 6: Double Couple
thresholding, 0.50 - 0.715 thresholding, 0.975 -1.00

6.2 Bridge Pile Data Set

Figure 7: Bridge data set, DC
coloring

Figure 8: Eigen difference log
scale coloring.  Yellow arrow
shows direction of applied force

Figure 7 shows the entire volume for bridge supports em-
bedded in soil. The piles penetrate halfway down onto the
soil. In the simulation, the additive stress pushed the bridge
support to the left. The eigen difference coloring highlights
the changes in stress with red and blue coloring above the
surface and within the piles. The sharp red-blue contrast
along the upper neck of the piles and in the bridge empha-
sizes that type of stress is flipping from linear to planar.

There is a circular appearance in the planes’ orientation at
the center of the volume. This is attributable to boundary
effects in the simulation and represents a very important
finding as it tells us that the model needs to be enlarged in
order to more realistically simulate the half-space.

Figure 9 shows thresholding by isotropy. The figure is col-
ored by log scale isotropy and shows ranges of 0.0-0.25 (neg-
ative isotropy) and 0.75-1.0 (positive isotropy). The bridge
pile on the right has a color change from red to blue just

S}adow/

Figure 9: Bridge data set, log scaled isotropy, 0.0-0.25 and 0.75-1.0

above where the pile enters the soil, indicating that the stress
has switched from positive (tension) to negative (compres-
sion). This is one of the critical features in geomechanics
that can result in tensile failure. The isotropy figure also
shows a shadowing effect. Shadowing comes from an anal-
ogy between the applied force and light, where a supporting
member may absorb or block the force. Its shadow is an area
under less stress. The shadowing is indeed interesting as it
directly and visually conveys information about an impor-
tant physical behavior, namely the back piles (bridge sup-
ports) will be shadowed by the front piles, and thus savings
can be made in reinforcement steel for shadowed bending.
It seems from the data that the isotropy (see Figure 9) also
presents a visual proof that the model can and needs to be
extended in the horizontal direction in order to simulate the
half space more realistically. Ideally, the simulation would
be sufficiently large that the boundaries would be unaffected
by the applied force. This, however, is always a tradeoff with
computation cost and even with this smaller model we can
get meaningful results.

7 DISCUSSION AND CONCLUSION

We have explored key features from several tensor domains,
looking for scalar quantities that succinctly describe geome-
chanical stress. We experimented using four different scalar
measures and used thresholding and opacity to reduce occlu-
sion and highlight regions of interest. Isotropy turned out to
be the most useful feature among those we tried. Along with
thresholding, it highlighted information about the materials’
physical behavior under stress.

We also presented a new stress glyph, plane-in-a-box
which provides stress orientation information and reveals
trends in a volume rather well. The algorithm is cheap,
providing interactive rendering rates. Our experiences with
geomechanics data validate the use of the glyph to reveal
interesting trends.
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