
HyperLIC

Xiaoqiang Zheng and Alex Pang
Computer Science Department

University of California, Santa Cruz, CA 95064
zhengxq@cse.ucsc.edu, pang@cse.ucsc.edu

Abstract

We introduce a new method for visualizing symmetric tensor fields.
The technique produces images and animations reminiscent of line
integral convolution (LIC). The technique is also slightly related to
hyperstreamlines in that it is used to visualize tensor fields. How-
ever, the similarity ends there. HyperLIC uses a multi-pass ap-
proach to show the anisotropic properties in a 2D or 3D tensor field.
We demonstrate this technique using data sets from computational
fluid dynamics as well as diffusion-tensor MRI.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

Keywords: hyperstreamlines, LIC, symmetric tensors, anisotropy,
animation, direct volume rendering

1 INTRODUCTION

Tensor data is useful in many medical, mechanical and physical ap-
plications. Second order tensors in 3D is a 3x3 matrix that contains
nine unique quantities, or six for the case of real symmetric tensors.
To help comprehend such a large volume of information remains a
difficult challenge for visualization research.

In this paper, we introduce a new method for visualizing sym-
metric tensor fields. It works on 2D tensor fields in 2D manifolds
or 3D tensor fields in 3D manifolds. 3D tensor data in 2D manifolds
have to be projected to the manifolds using the tensor transforma-
tion and projection introduced later in this paper. The visualizations
are specially good at showing the anisotropy in the tensor fields and
the resulting images resemble those of LIC. Similar to LIC, a white
noise texture is needed. Conceptually, every pixel in the result-
ing visualization is calculated using an area (or volume, for 3D)
averaged noise texture. The shape of the area (or volume) is deter-
mined by the local tensor field. Carrying this process out on a point
by point basis will result in a blurred image as this is akin to low
pass filtering. A better strategy is to think of the process as placing
primitives such as squares or circles in 2D, cubes or spheres in 3D,
along the path of a hyperstreamline. These primitives are deformed
by the tensor field, and the resulting swept area or volume identifies
the parts of the noise texture that will contribute to the intensity of
a pixel or voxel.

What we are seeing in the HyperLIC visualizations is the
anisotropy in the tensor field. Anisotropy in 3D tensor fields can

be classified into three types: (a) linear or highly anisotropic char-
acterized by the dominance of one eigenvalue, (b) planar character-
ized by two roughly equal eigenvalues, and (c) spherical or isotropic
characterized by three roughly equal eigenvalues. HyperLIC is par-
ticularly good at distinguishing between linear and spherical ten-
sor regions because of the strong contrast between the sharp and
smooth features respectively. Planar tensor regions do not stand out
as dramatically compared to these two when viewed from different
directions.

Digital images and animations can be accessed online at:
www.cse.ucsc.edu/research/avis/hyperlic.html.

2 RELATED WORK

We review several classic and recent works that are related to this
paper in one way or another. These are: hyperstreamlines [Del-
marcelle and Hesselink 1993], adaptive filtering of noise fields
[Sigfridsson et al. 2002], oriented tensor reconstruction [Zhukov
and Barr 2002], direct volume rendering of diffusion tensors
[Kindlmann et al. 2000], and line integral convolution [Cabral and
Leedom 1993].

Hyperstreamlines were introduced by Delmarcelle and Hes-
selink in 1993. A tensor field is first decomposed into three eigen-
vector fields. Hyperstreamlines are essentially streamlines con-
structed from one of the eigenvector fields. The other two eigen-
vector fields are then encoded as changes in the cross section along
the streamline. From any seed point, three hyperstreamlines can be
generated using one of the three eigenvector fields for the stream-
lines and the other two for the cross section. In this sense, the tech-
nique does not provide a global view and users need to mentally
fill in what is happening with the tensor field even in the vicinity
of the seed point. Like streamlines, one cannot seed too many hy-
perstreamlines as clutter becomes an issue. For non-symmetric ten-
sors, the rotational components are encoded as “wings” along the
main hyperstreamlines. HyperLIC is similar to how hyperstream-
lines handle the symmetric portion of the tensor field in the follow-
ing manner – the volume swept out by a hyperstreamline roughly
corresponds to the volume of the noise texture used by HyperLIC
to calculate the intensity value at the seed point.

This brings us to the LIC algorithm for visualizing vector fields,
introduced by Cabral and Leedom in 1993. Given an input vector
field and a noise texture with the same dimensions, a LIC image is
generated by calculating a streamline at each point, and then calcu-
lating a weighted average of the noise textures along the streamline,
to produce the intensity value at the seed point. Interrante has ex-
tended LIC to 3D and presented ways to visualize flow within the
3D volume [Interrante and Grosch 1997]. HyperLIC is similar to
LIC in that it calculates a weighted average of noise texture val-
ues along a streamline. However, instead of simply using noise
texture values along the streamline, we use noise texture values in
the vicinity of the streamline as well. This local vicinity is defined
by how tensors along the streamline deform the space around it.
Specifically, unlike hyperstreamlines which uses only one of the
eigenvector fields at a time to integrate streamlines, HyperLIC uses



both (2D) or all three (3D) eigenvector fields to define the local
deformation space.

More recently, [Sigfridsson et al. 2002] introduced an algorithm
for visualizing symmetric tensor fields by iteratively applying an
adaptive filter to directionally smear a noise texture in the frequency
domain. Several discrete predefined directional filters are employed
to categorize the continuous tensor anisotropy. However, the dis-
cretization of the filter orientation may be a potential drawback. If
an anisotropic linear tensor falls in between a pair of oriented fil-
ters, it can only be described by their joint effects. Because of this,
some contrast is lost in the result.

Recently, attention has focused on how to visualize diffusion ten-
sor MRI images. One of the challenges is how to deal with the noisy
nature of the tensor field particularly when tracing neural pathways
[Zhukov and Barr 2002]. Tracing essentially involves integrating a
streamline using the principal eigenvector. In that method, moving
least square regularization successfully overcame the noise problem
and the relatively coarse grid used in the data set. Similar to hyper-
streamlines, seeding is an issue that needs to be addressed in a more
general fashion. Since the neural pathway tracing was to highlight
regions of high anisotropy, seeds were naturally initiated where the
linear tensors were high. Like hyperstreamlines, the method pro-
vides crisp visualization of streamlines along an eigenvector, but
does not provide a continuous, global view of the tensor field.

One approach that does attempt to provide a continuous global
view is the adaptation of direct volume rendering to tensor fields
presented by [Kindlmann et al. 2000]. Like [Zhukov and Barr
2002], the tensor field is first analyzed with respect to its anisotropy
and classified into three continuous categories: linear (anisotropic),
planar, and spherical (isotropic) tensors. This property of the tensor
field is then used as barycentric coordinates of a triangular trans-
fer function that highlights regions of different anisotropic prop-
erties. Further enhancements are then provided using lit-tensors
mixed with opacity gradient shading and hue-balls combined with
deflection mapping [Kindlmann and Weinstein 1999]. The deflec-
tion mapping strategy seems to provide the most dramatic results,
but would also depend on the granularity of the textures used.

3 METHODS

In this section, we present the basic idea behind the HyperLIC algo-
rithm, and show how it is refined to provide a more continuous rep-
resentation of the anisotropy in the tensor field. This is followed by
a description of how HyperLIC is actually implemented as a more
efficient multi-pass approach. The descriptions are first presented
for 2D tensor fields. Subsequent discussions present how the multi-
pass algorithm can be easily extended to 3D. Other issues such as
how to deal with sign indeterminacy, animation, and rendering of
3D HyperLIC results are presented in this section as well.

Before we describe HyperLIC in detail, we introduce some
preparatory transformations on the data.

3.1 Tensor Processing

Some preprocessing may be necessary to prepare the data for the
HyperLIC algorithm. Examples include: if the data is defined in a
curvilinear grid or if there is distinction between computational and
physical coordinate systems; a 2D manifold is to be extracted from
a 3D tensor field; or a sharper contrast is desired from the HyperLIC
algorithm.

3.1.1 Tensors in Curvilinear Grids

It is quite common for computational fluid dynamics applications to
distinguish between computational space and physical space. For
example, if we want to study the tensors on a wing geometry, this

would correspond to a slice in computational space. Alternatively,
one may want to study the tensors on a slice through physical space.
In either case, 3D tensors need to be projected onto a surface. This
surface can be expressed as S(u, v), where u and v are computa-
tional coordinates. We also need to find a transformation between
tensors in physical and computational spaces. Let the three prin-
cipal axes be: Q1 = ∂S

∂u
, Q2 = ∂S

∂v
and Q3 = Q1 × Q2. Also

define:

W =





Q1x Q2x Q3x

Q1y Q2y Q3y

Q1z Q2z Q3z



 (1)

Assume the tensor is represented as P in physical space and rep-
resented as C in computational space. We want both P and C to
transform a unit sphere in their own space, Sp and Sc respectively,
into the same ellipsoid in physical space. Because Sp and Sc are
both unit spheres, Sp = R · Sc, where R is a unitary matrix such
that RT · R = I . This can be expressed as:

P · Sp = P · R · Sc (2)

P · Sp = W · C · Sc (3)

where we obtain

P · R = W · C (4)

and solving for C

C = W−1 · P · R = POLARS(W−1 · P ) (5)

where POLARS(X) is the symmetric part of X in a polar decom-
position. This transformation guarantees that C in computational
space has the same effect as P in physical space.

The justification for the transformation above is because a matrix
M can always be represented as the product of a symmetric matrix
Ts and a unitary matrix R.

M = Ts · R (6)

And if the transformation matrix W between the physical space and
the computational space is unitary, the transformed tensor C from
Equation 5 is the same as that from a classical tensor transforma-
tion. When W is not unitary, a tensor resulting from a classic trans-
formation may be asymmetric, while the tensor from Equation 5 is
always symmetric.

3.1.2 Tensor Projection

Once the tensor is in the computational space, we need to project it
onto the surface, S(u, v). The first two axes, Q1 and Q2 are on the
surface while Q3 is perpendicular to this surface. So we discard all
the components associated with Q3, which results in:

C2 =

(

C11 C12

C21 C22

)

(7)

where C2 is now a 2 × 2 tensor. Through this projection, a planar
tensor along the surface is expressed as a 2D tensor without loss of
information.



Figure 1: Squares primitives aligned with eigenvectors.

3.1.3 Tensor Normalization and Rescaling

Tensor normalization and rescaling allow us to vary the contrast
level of the resulting image. Before normalization, we define the
largest absolute eigenvalue of a tensor as its magnitude which we
denote by l. The eigenvector associated with the largest absolute
eigenvalues is defined as the principal axis of a tensor. For all the
tensors, we multiply them with the inverse of their magnitude, 1/l.
This normalizes the largest absolute eigenvalues of all tensors to 1.
We allow the user to rescale the tensor according to a user specified
contrast parameter n as follows:

Tr = T n (8)

where T and Tr are the original and rescaled tensors respectively.
The exponentiation operation is that defined on matrices. For a gen-
eral tensor T with eigenvector matrix E and diagonal eigenvalue
matrix diag(λ1, λ2, λ3), the above equation can also be written as:

Tr = E · diag(λn
1 , λn

2 , λn
3 ) · E−1 (9)

where the contrast parameter n can be any real number. The eigen-
vector matrix E is constructed by columns and all eigenvector are
normalized to unity.

3.2 Basic Idea

Prior to visualizing the symmetric tensor fields, they are first de-
composed into orthogonal eigenvector fields: E = {e1, e2, e3}.
The corresponding eigenvalues are: Λ = {λ1, λ2, λ2}.

The basic idea of the 2D HyperLIC algorithm is as follows:
given a 2D symmetric tensor field and an input noise field, a ge-
ometric primitive is placed over each location. This primitive is
going to be deformed by the tensor field. Using the deformed prim-
itive at each location, the noise texture values under each deformed
primitive are averaged together to give the pixel value of the re-
sulting image. This procedure is similar to the DDA algorithm de-
scribed in [Cabral and Leedom 1993] where the noise texture under
each vector line glyph is used to calculate pixel intensities. When
this process is carried out over tensor fields (as opposed to vector
fields), the anisotropic properties of the underlying tensor field are
revealed.

We experimented with two types of geometric primitives. The
first type is a circle. In general, tensors deform circles to ellipses.
An advantage of this primitive is that we do not need to decom-
pose the tensor into component eigenvectors. Circles work best in
regions with isotropic tensors. In areas with linear tensors, the re-
sulting textures have very sharp contrast which tend to obscure the
orientation of the tensors in the local neighborhood.

The second type of primitive is a square, oriented over each ten-
sor so that the sides are aligned with the orthogonal eigenvectors –

Figure 2: Sampling strip defined by a primary hyperstreamline and
a set of orthogonal hyperstreamlines.

hence the need to first find the eigenvectors. The tensor deformation
of these eigenvector aligned squares results in rectangles as shown
in Figure 1. The scaling factors are simply the eigenvalues. Since
we have normalized and rescaled the tensor so that its largest abso-
lute eigenvalue is always 1, the longest side of the sampling strip is
always a constant. We choose the size of the squares as 1/25 of the
image dimension.

In regions with purely linear tensors, the square primitives are
reduced to line segments and hence produce results similar to the
DDA algorithm. In regions with isotropic tensors, HyperLIC is re-
duced to a smoothing algorithm, which averages the input texture
within a local region. It produces a blurred image without sense of
directions. In summary, HyperLIC maps the anisotropic properties
of tensors to sharp and blurred regions in the resulting image.

3.3 Conceptual Algorithm

In LIC, the DDA is carried one step further, where the noise texture
is integrated over the streamline rather than just a straight line seg-
ment [Cabral and Leedom 1993]. This allows one to capture more
subtle features and improve contrast. This enhancement can be car-
ried out with HyperLIC in the following fashion: One of the eigen-
vector fields is selected to generate a hyperstreamline using N inte-
gration steps. This hyperstreamline acts as a skeleton of the texture
sampling region. Next, we draw hyperstreamlines using the other
eigenvector at each of the N points along the first hyperstreamline.
As shown in Figure 2, these two steps create a sampling strip along
the first hyperstreamline.

Where the tensors are highly linear, the sampling strip is essen-
tially the primary hyperstreamline and HyperLIC reduces to LIC.
With isotropic tensors, this sampling strip forms a square which
acts a smoothing filter on the input image. This improved algo-
rithm works better than its basic version just as LIC works better
than the DDA version.

3.4 Multi-pass Approach

While the conceptual algorithm captures subtle details of the under-
lying tensor fields, it is also much more expensive than LIC. This
is because for each pixel, HyperLIC needs to create a 2D integra-
tion area as opposed to 1D in LIC. Here, we describe a multi-pass
approach that accelerates the computation of HyperLIC.

Let P be a point in the tensor field, In be the input noise texture
image, and Io be the output HyperLIC image. Then, an output pixel



is defined as:

Io(P ) =

∑N

i=−N

∑N

j=−N k(i, j)In(Pi,j)
∑N

i=−N

∑N

j=−N k(i, j)
(10)

Pi,j = Pi−1,j + λ1(Pi−1,j)e1(Pi−1,j)∆t (11)

P0,j = P0,j−1 + λ2(P0,j−1)e2(P0,j−1)∆t (12)

P0,0 = P (13)

where λn(X), en(X), k(i, j), n = 1, 2 are the nth eigenvalues,
eigenvectors and the weight function at point X . ∆t is the inte-
gration step. In our experiment, the joint kernel function k(i, j) is
defined as the product of two kernel functions k1(i) and k2(j). k1

and k2 are constant for static images, and are defined in Equation 20
for animation sequences.

If we define I1(P ) as:

I1(P ) =

∑N

j=−N k2(j)In(Pj)
∑N

j=−N k2(j)
(14)

Pj = Pj−1 + λ2(Pj−1)e2(Pj−1)∆t (15)

P0 = P (16)

then, Io(P ) can also be expressed as:

Io(P ) =

∑N

i=−N k1(i)I1(Pi)
∑N

i=−N k1(i)
(17)

Pi = Pi−1 + λ1(Pi−1)e1(Pi−1)∆t (18)

P0 = P (19)

Equations 14 and 17 are essentially the output images of the un-
normalized LIC on λ2e2 and λ1e1 vector fields with input images
In and I1 respectively. Thus, we can reduce HyperLIC to a multi-
pass unnormalized LIC. In the first pass, we apply the unnormalized
LIC on λ2e2 using the input image In and kernel k2 to get an inter-
mediate image I1. In the second pass, we use the output image from
the previous pass, I1, as the input image and apply unnormalized
LIC on λ1e1 with kernel k1 to generate the output image Io.

Such a two-pass approach greatly reduces the amount of redun-
dant computation in the conceptual algorithm. In each pass, only a
1D integration is needed. To further improve performance, FastLIC
is implemented in each pass. The cost of HyperLIC on 2D tensors is
only twice the cost of standard LIC. This allows one to interactively
explore 2D tensor fields using HyperLIC.

In the vicinity of all tensors, the first pass filters the noise tex-
ture into a LIC-like image with dense and sharp lines, if we pro-
cess the large eigenvalues first. In the second pass, the intermediate
image remains unchanged if the orthogonal eigenvalues are small,
implying a region of high anisotropy. If the eigenvalues are very
high, which means low anisotropy, it blurs out the image across the
orthogonal direction. It achieves the same goal as the conceptual
algorithm in a different but much faster way.

We note that the conceptual algorithm and the multi-pass im-
provement both depend on which eigenvector is processed first.
Theoretically, the order in which the eigenvector fields are pro-
cessed will affect the final image. In practice, the differences are
not noticeable (see Figure 4).

The differences are due to the spatial variation in the tensors.
That is, following the major eigenvector for X steps from P and
then switching to the minor eigenvector for Y steps may end up
in a different location than following the minor for Y steps and
then switching to the major for X steps. In symmetric tensors, the
error is on the order of O(L). In our experiments, L is set to 1/25
of the size of images. Since L is relatively small for each point,

the difference is negligible both theoretically and empirically. It
means we can interpret the results from HyperLIC to be affected
only by the underlying tensor field and not by the sequence of how
the eigenvectors were processed.

Although the sequence of how the eigenvectors are processed
is relatively unimportant, how the eigenvectors are classified dra-
matically affects the quality of the output images. That is to say,
eigenvectors must be classified into major or minor fields. This al-
gorithm produces nice results in most regions. However, because
the major and minor eigenvectors may switch near critical points
in the tensor field, integrating along an eigenvector field generates
sudden transitions in an otherwise smooth tensor.

To avoid this problem, we label the eigenvector fields as follows:
First, we find a point with high anisotropy and label its eigenvectors
as first and second. Next, we iteratively label its neighbors consis-
tently until all the points are labeled. An important point is that we
set the eigenvectors as unchanged through the critical points. This
labeling algorithm produces smoothly changing eigenvectors. For
a smooth tensor field, there is no sudden change of major or mi-
nor eigenvectors. After we label the eigenvectors, the order of their
processing is not important as we show in the results.

3.5 Sign Indeterminacy

HyperLIC images show the orientation of anisotropy but it doesn’t
show the direction of the major eigenvector. This is because the
sign of the eigenvector is indeterminate. However, we can im-
pose a consistent direction on the eigenvectors by using the signs
of the eigenvalues. The idea is inspired by the behavior of charged
molecules. A positively charged molecule M in an electric field
dispels all other positively charged molecules and attracts all other
negatively charged molecules. In other words, we can understand
the sign of each molecule in this field by observing their motion
relative to M .

To generalize this idea, we first synthesize a simple interroga-
tional vector field. We then make the eigenvector directions follow
this synthetic vector field. The synthetic vector field we chose in
our experiment is v(x, P ) = x − P , where P is a user-specified
attracting point and x is a location in the vector field. The sign of
an eigenvector ei is chosen to make λiei · v(x, P ) > 0. With this
direction-deciding algorithm, all eigenvectors with positive eigen-
values flow away from the attracting point while all eigenvectors
with negative eigenvalues flow to the attracting point. We can eas-
ily identify the signs of the eigenvalues by observing whether the
flow direction is toward or away from the attracting point.

In our experiments, a single attracting point is enough. How-
ever, for more complicated data, we may need multiple attracting
points or a more complex interrogational vector field, or move the
attracting point interactively.

3.6 Animation

After deciding the directions of eigenvectors, we propose an ani-
mation technique similar to that introduced in [Cabral and Leedom
1993] by varying the kernel functions according to time T .

kn(w, T ) = 1+cos(cw)
2

· 1+cos(dw+βT )
2

, n = (1, 2) (20)

k(w1, w2, T ) = k1(w1, T ) · k2(w2, T ) (21)

where c and d are two constants and β is the phase shift of the ripple
function. kn(w), n = 1, 2 are kernel functions defined on each of
the eigenvectors. The joint kernel function k(w1, w2) is defined as
the product of k1(w1) and k2(w2).

This time varying kernel function constantly shifts toward the
eigenvector directions. For a linear eigenvector, only the kernel



function for the major eigenvector has any effect, so HyperLIC pro-
duces a LIC-like animation flow. For an isotropic eigenvector, the
kernel function is a multiplication of two simultaneously shifting
kernel functions, so the flow pattern appears confused and ambigu-
ous.

3.7 Extending HyperLIC to 3D

The HyperLIC algorithm described thus far works well in 2D. It
shows the anisotropic properties of the tensors as varying intensi-
ties in the output image and maps tensor magnitude to color. The
signs of eigenvalues are mapped to the directions of eigenvectors
and visualized through animations. Although all the information of
2D symmetric tensors are visualized, the extra information in the
third dimension are lost during tensor projection.

Fortunately, HyperLIC can be easily extended to 3D. The con-
ceptual 3D HyperLIC works by averaging the input 3D noise tex-
ture using a 3D sampling volume defined by the three local eigen-
vectors. The two-pass 2D HyperLIC is extended to three passes in
3D. During each pass, one set of eigenvectors is used to apply un-
normalized LIC on the input volume with the corresponding kernel
functions. The output volume is then passed as the input volume in
the next pass. The final 3D texture volume is then rendered using
direct volume rendering.

We use a 3D diffusion tensor MRI brain data to demonstrate
3D HyperLIC. In medical data, fiber traces are important features.
Fibers are represented by tensors with high anisotropy. On the other
hand, tensors associated with white matter are relatively isotropic.
HyperLIC visualizes the fibers as sharp lines and the rest of the
brain as blurred regions. The global structure is insensitive to noise
in the underlying data because HyperLIC smears out the local noise.
To highlight the fibrous regions, we chose to map the local variance
in the output volume to transparency prior to volume rendering us-
ing the following:

var(P ) =

√

∑

(Io(P ) − Io(Pn))2

6
(22)

where Pn are neighboring points around P . This form of variance
gives a measure of how similar or dissimilar neighboring points are
from the value at P . This measure is low in isotropic regions and
high in fibrous regions.

Using a transfer function that maps this variance to transparency,
3D HyperLIC can extract the fibrous regions of the brain data set.
In this transfer function, the higher variances are mapped to lower
transparency. In our experiments, we use a step function that maps
all variances larger than 0.065 to the opacity of 0.1 and all others to
0. By choosing the right parameter, HyperLIC volumetric texture
reveals the “edge” between the smooth and the sharp region. Tensor
magnitudes are still mapped to hue as before while the HyperLIC
volumetric texture is mapped to value in an HSV color model.

Accurate and smooth shading is crucial to visual perception. In
traditional volume rendering algorithms, the normal of the surfaces
are mapped to the gradient of data values. We find this to produce
very noisy gradients. Instead, we apply a smoothing algorithm re-
peatedly to obtain a smoother normal. After each step, the cells
are assigned the average of the old values in its neighboring cells.
Note that we do not apply this smoothing algorithm on I0 because
it will smooth out the variance, which is critical to the extraction
of the features. After smoothing out the variances during the gra-
dient generation stage, we produce a more continuous shading on
the same sharp features. The result is smoother shading on the fiber
structures which greatly enhances the depth perception of the brain.
An important point to note is that smoothed variances are only used
to calculate the gradient for shading purposes. The transparency is

still mapped to the original variances. Hence, what we are seeing
accurately reflects what is in the data.

4 IMPLEMENTATION ISSUES

4.1 Inverse HyperLIC

The default HyperLIC algorithm shows strong directional informa-
tion about the major eigenvectors, but it does not produce a strong
visual effect about the other components. To compensate, we can
switch the tensors in the preprocessing stage by swapping the ten-
sors – so the minor eigenvectors become the major eigenvectors
and vice versa. As a result, the images strongly resemble the minor
hyperstreamlines (see Figure 3(c)).

4.2 Storage Requirement

3D HyperLIC is computationally expensive and requires a lot of
memory. For a high resolution data set, 5123 volume of floats in
our experiment, the input and output volumes take up to 800 Mb
of memory. To handle this huge memory demand, we solve the
problem one layer at a time.

HyperLIC is a locally based algorithm. A voxel in the output
volume is only affected by voxels within a certain distance of the
corresponding input voxel. Because the eigenvalues are normal-
ized, the maximum radius of the effective area is 2N + 1 where N
is the integration length. So, when we compute the output volume
for layer Y , only layers from Y −N to Y + N in input volume are
needed. We implemented this method with an output buffer of one
layer, and an input buffer of up to 2N +1 layers. During each step,
we update the output layer with the input layers. At the end of each
step, we write the output layer into a temporary file and update the
next layer of the input buffer, then go to the next step.

The results of the output volume after each pass in HyperLIC is
stored in a temporary file. After each pass, we use the output file
in the previous pass as input in the next pass. We implement this
algorithm in parallel, by computing each output layer separately.
Because the input textures are read-only, they are shared by all the
rendering threads. When a rendering thread for an output layer is
started, only the input layer not already in memory is loaded. This
strategy reduces the memory requirements and makes the imple-
mentation very amenable to parallel computation on machines with
multiple processors.

4.3 Rendering

3D HyperLIC produces a colored volume. In our experiment, this
volume is 5123. Interactive exploration of this large volume is a
key component to understand the structure of the tensor data.

We employ a hardware-accelerated shell rendering algorithm to
render this volume. Before the rendering, three sets of volume tex-
tures are generated, each of them is sliced along one of the three
texture coordinates. When rendering from a given viewpoint, we
pick the set of texture associated with the axis that best faces the
camera. This is determined by computing the dot product of all
three candidate axes and the camera and then use the one with max-
imum absolute value. If there is no clear winner, the output image,
Iout is a weighted blend of three images. Let Vw be the camera
orientation, Ni, (i = 1, 2, 3) be the three axes, Li be the length
of side of a cell, Ii is the image rendered using texture slices along
axis i. The output image is generated as follows:



Hi =
‖Vw · Ni‖

Li

, (i = 1, 2, 3) (23)

Mi =
Hi

∑3
i=1 Hi

(24)

Wi =

{

Mi − α, Mi ≥ α
0, Mi < α

(25)

Iout =

∑3
i=1 Wi · Ii
∑3

i=1 Wi

(26)

where α is a threshold parameter to choose between the smooth-
ness and accuracy of the rendering. In our experiments, α is set as
0.3. The unoptimized implementation generates the 5123 volume
texture on the order of five minutes, and renders each image on the
order of three seconds on a Dell Dimension 8100 with a single 1.5
GHz Pentium 4, 1 Gb of memory, and an nVidia GeForce2 Ultra.

5 RESULTS

In this section, we present results from HyperLIC on different data
sets. The first data we experimented with is the single point load
data. This stress tensor data is simple and thoroughly studied and
therefore an excellent data for verifying the algorithm. The sec-
ond data set is strain tensors derived from the flow past a cylinder
with a hemispherical cap. This data is more complicated but it has
also been used to demonstrate other published tensor visualization
methods. The third data set is diffusion tensor MRI of the brain.
Neural pathways are represented by tensors with high anisotropies.
We present results both in 2D projection and 3D for this data.

Figure 3 includes 2D HyperLIC results on the single point load
stress tensors from different viewpoints. Figure 3(a) is a slice from
the middle of the volume and viewed from the point load direc-
tion. It is mostly composed of components from medium or minor
eigenvectors. We see that the center of this slice is quite isotropic.
Around the center is a ring formed by lines, which means tensors
are highly anisotropic. It is the boundary where the minor eigenval-
ues are zero. From the animation available from the url provided
in Section 1, we see flow within the ring going towards the center,
while flow outside the ring going away from the center. This reveals
that stress inside the ring is tensile, outside the ring is compressive,
and the ring itself is free of stress away or toward the center. A little
further away from the ring, we find another isotropic area. After the
yellow area, the tensors are mostly represented by dense and sharp
lines oriented radially that show high anisotropy in the regions.

Figures 3(b) and 3(c) are side views. Figure 3(b) contains mostly
sharp lines, so eigenvalues are very large in these orientations. An
interesting feature appears near the surface shown in more detail
in Figure 3(d). There we see a change of pattern. The sharp lines
change directions rapidly in a very narrow strip. Further observa-
tion in the animation reveals that flow near the surface is attracted to
the point load, while flow further away is repelled. It clearly shows
that the stress near the surface is tensile, while it is compressive in
other areas. This can be confirmed in the stress tensor equation and
is hardly shown by other visualization methods. Figure 3(c) is the
same view as Figure 3(b), but shows the inverse HyperLIC which
highlights the minor eigenvectors.

Images in Figure 5 are two results from strain tensors in the flow
past a cylinder with a hemispherical cap. Figure 5(a) is from the
inner layer (closer to the geometry) and Figure 5(b) is from the
middle layer (farther away from the geometry). From these two
images, we can clearly see the tensor orientations on the cap as well
as locations of blurred isotropic tensors. We can also observe two
degenerate wedge points. One is on the cylinder, while the other is
on the cap.

Images from Figure 6 are from brain tensor data with different
scaling parameters. Tensor normalization and rescaling is used in
the preprocessing stage of HyperLIC to vary the degree and contrast
in which anisotropy is depicted. The higher the scaling parameter,
the more linear HyperLIC looks. In Figure 6(a), most regions ex-
cept a few are blurred. In Figure 6(b), more fibers are visible. We
can observe the main fiber structure in this picture. This demon-
strates that tensor scaling allows the user to vary the amount of
detail in HyperLIC images.

Figure 7 shows results from the brain tensor data using 3D Hy-
perLIC. Images are from different viewpoints and rendered with
shading. The light is always from the camera position. The main
structures of the brain can be identified from these views. Fig-
ure 8 illustrates the effect of rendering without and with shading.
Finally, in Figure 8(c), we use chromadepth mapping [Bailey and
Clark 1998] to further enhance the depth perception with the aid of
some inexpensive lens.

6 CONCLUSIONS

We presented a new technique for visualizing the anisotropy in
symmetric 2D and 3D tensor fields. The technique provides a
global, continuous representation of the field requiring minimal
user input. Furthermore, the technique can produce animations that
enhances perception and our understanding of the tensor field.

ACKNOWLEDGEMENTS

The brain dataset is courtesy of Gordon Kindlmann from the Sci-
entific Computing and Imaging Institute, University of Utah, and
Andrew Alexander from the W. M. Keck Laboratory for Functional
Brain Imaging and Behavior, University of Wisconsin-Madison.
The flow data is courtesy of NASA. This work is supported in part
by NSF ACI-9908881 and NASA Cooperative Agreement NCC2-
1260. Thanks go to Carol Mullane for help with proofreading.

References
BAILEY, M., AND CLARK, D. 1998. Using ChromaDepth to obtain inex-

pensive single-image stereovision for scientific visualization. Journal of
Graphics Tools 3, 3, 1–9.

CABRAL, B., AND LEEDOM, L. 1993. Imaging vector fields using line
integral convolution. Computer Graphics Siggraph Proceedings, 263–
270.

DELMARCELLE, T., AND HESSELINK, L. 1993. Visualizing second-order
tensor fields with hyperstreamlines. IEEE Computer Graphics and Ap-
plications 13, 4 (July), 25–33.

INTERRANTE, V., AND GROSCH, C. 1997. Statagies for effectively visu-
alizing 3D flow with volume lic. In Proceedings IEEE Visualization ’97,
IEEE Computer Society Press, R. Yagel and H. Hagen, Eds., 421–424.
Case Study - Flow Visualization.

KINDLMANN, G. L., AND WEINSTEIN, D. M. 1999. Hue-balls and lit-
tensors for direct volume rendering of diffusion tensor fields. In IEEE
Visualization, 183–189.

KINDLMANN, G., WEINSTEIN, D., AND HART, D. 2000. Strategies for di-
rect volume rendering of diffusion tensor fields. Visualization and Com-
puter Graphics 6, 2, 124–138.

SIGFRIDSSON, A., EBBERS, T., HEIBERG, E., AND WIGSTROM, L. 2002.
Tensor field visualization using adaptive filtering of noise fields com-
bined with glyph rendering. In Proceedings of Visualization 02, 371–
378.

ZHUKOV, L., AND BARR, A. 2002. Oriented tensor reconstruction: Tracing
neural pathways from diffusion tensor MRI. In Proceedings of Visual-
ization 02, 387–394.



(a) Top view (b) Side view (c) Side view using Inverse HyperLIC

(d) Zoomed view of the top portion of (b)

Figure 3: Single point load data from different view points.

(a) Eigenvector order switched (b) Conceptual algorithm

Figure 4: There are no noticeable visual differences among the multi-pass algorithm in Figure 3(b) and (a) where the minor eigenvector is
processed first, and (b) using the more expensive conceptual algorithm.

(a) Inner layer (b) Middle layer

Figure 5: Flow past a cylinder with hemispherical cap. HyperLIC of two different computational layers of the strain rate tensor. Arrows point
to locations of degenerate wedge points.



(a) Scaling with n = 2 (b) Scaling with n = 8

Figure 6: A 2D slice of the brain data using different tensor scaling parameters.

(a) Back view (b) Right view (c) Front view

Figure 7: 3D HyperLIC on diffusion tensor MRI brain data from different view points.

(a) Unshaded (b) Shaded (c) Chromadepth

Figure 8: Comparison of different rendering techniques.


