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ABSTRACT
This paper presents a new seeding strategy for visualiz-
ing 3D symmetric tensor data using hyperstreamlines. The
goal is to automate the process of generating seeding pat-
terns to identify important hyperstreamline features. The
method is based on anisotropy measurements to optimize
the seeding positions and density of hyperstreamlines to
reduce visual clutter. Additionally, user can place random
distributed seeding points in the tensor field to ensure other
minor hyperstreamline features are captured as well. The
main advantage of this approach is that the user is not re-
quired to have a knowledge of the tensor field in advance.
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1 Introduction

Visualization of tensor fields is a challenging problem and
becomes more common in medical and engineering areas.
Original 3D symmetric tensor can be represented by six in-
dependent values. Many important features of the tensor
fields are described by the eigenvalues and eigenvectors of
3x3 matrices. Due to the multi-variant nature, conventional
vector or scalar visualization techniques can not be easily
applied to tensor fields. A hyperstreamline technique [1]
has been proposed and is useful in visualization of 3D ten-
sor fields. Although hyperstreamlines can show the rich in-
formation of 3D tensor structure, few approaches have been
able to address the visual clutter or visualization artifacts,
most of which comes from the commonly used regular and
random seeding.

We describe a new seeding strategy that can place
seeds more cleverly to achieve better visualization quality
and help user understand the data.

Our anisotropy based seeding approach intends to re-
cover fiber structure in 3D symmetric tensor fields in a
more intelligent and efficient way by using anisotropy mea-
surements to generate seeding around the regions with spe-
cific anisotropy characteristics. User interactions and feed-
backs are also available for our approach to refine the seed-
ing patterns. More seedings can also be applied to the rest
of the volume using Poisson sphere distribution to cover
the features that might rise from the empty space.

The rest of this paper is organized as follows: Chapter
2 reviews some existing tensor visualization techniques and
seeding strategies; Chapter 3 describes how the anisotropy
based seeding strategy are applied to hyperstreamlines and
implemented; Chapter 4 discusses results and issues of us-
ing the seeding strategy; Chapter 5 concludes the paper and
identifies additional future works in this area.

2 Related Work

There are several visualization techniques for symmetric
tensor fields. Among these are arrow plots or hedgehogs
[2], ellipsoidal icons [3], tensor glyphs [4], hyperstream-
lines [1], tensorlines [5], hyperstreamsurfaces [2], Hyper-
LIC [6] and superquadric tensor glyphs [7]. We review
those methods which are relevant to this paper.

Arrow plots or hedgehogs are conventional vector
field visualization techniques. Usually they are used for
2D flow and placed on the surface of the flow. They can be
directly extended to visualize principal components of 3D
real and symmetric tensor fields. This simple approach uses
glyphs with short lines with or without arrow heads, usu-
ally distributed uniformly across the flow field by regular
grid seeding or random seeding. The line orientation indi-
cates the orientation of eigenvectors, while the line length
(or line color) is usually used to indicate eigenvalues. Ad-
vection is typically not used with hedgehogs and thus only
very limited local instantaneous tensor characteristics are
shown.

Ellipsoidal icons and tensor glyphs are used to visu-
alize real symmetric tensor fields. Tensor information is
encoded with geometric objects. They share the same seed-
ings as hedgehogs and their uses are also limited by their
discrete nature.

Hyperstreamlines are generated by constructing a
tube or helix structure from the other two eigenvalues and
eigenvectors [1]. As a result, hyperstreamlines can fully
represent the six values of symmetric tensor fields. When
number of hyperstreamlines increases, the visualization
loses quality and clutter becomes the key problem since
hyperstreamlines have a similar visual representation as
streamlines. While the tensor fields determine the direction
of hyperstreamlines, it is extremely important to choose
seedings carefully.

Tensorlines [5] extends the traditional propagation



methods and stabilize it in isotropic regions. However, it
did not address the visual occlusion and clutter issue. Hy-
perstreamsurfaces use a set of points on a curve to con-
struct a number of hyperstreamlines and then connect them
with polygons. They provide some more information but
require the user to have some knowledge of the data in or-
der to place the point set at the right position. HyperLIC
is a multi-pass approach to generate images that resemble
those of LIC to visualize the anisotropy in tensor fields. Su-
perquadric tensor glyphs are used as tensor glyphs in a new
way to encode more information and express the property
of symmetry.

Among the existing tensor visualization techniques,
there is very limited discuss about the seeding problem be-
sides using a regular grid seeding or random seeding. But
we will see that it’s a key problem in the visualization of
3D tensor fields.

3 Methods

In this chapter, we first review tensor theory and visual-
ization of tensor fields using hyperstreamlines. Then our
seeding strategy is described in detail.

3.1 Tensor Theory

3D symmetric tensor fields are very common in medical
and engineering. At each point, a symmetric tensor T can
be represented by a 3x3 matrix composed of six indepen-
dent values:
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Furthermore, after eigen decomposition, tensor T has
unit-length orthogonal eigenvectors � ��� � 	�� � 
 and three
corresponding real eigenvalues � ��� � 	�� � 
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The original tensor can be reconstructed by
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Thus, visualization of a tensor field is fully equivalent
to the simultaneous visualization of these three eigenvec-
tor fields, with corresponding eigenvalues representing the
magnitudes [8][9]. It should be noted that eigenvectors are
vectors with sign indeterminacy which asks for additional
care in visualization process.

Similar to the critical points in vector fields, in a 3D
symmetric tensor field, degenerate points are points where
at least two eigenvalues are equal to each other [10]. The
integral lines of eigenvectors will cross each other where

degeneracy occurs. Three types of degenerate points can
be expressed as � �1� � 	&2 � 
 (5)� � 2 � 	 � � 
 (6)� � � � 	 � � 
 (7)

In a diffusion tensor field, fiber structures are very im-
portant features, especially in the study of biological tissues
from diffusion tensor magnetic resonance imaging datasets.
The anisotropic diffusion properties are measured to pro-
vide information about the tissue microstructure. Given the
eigenvalues defined above, one can define the anisotropy
coefficients which correspond to the linear, planar mea-
sures 3/4 � � �65 � 	� �87 � 	97 � 
 (8)3�: �  <; � 	=5 � 
�>� �87 � 	97 � 
 (9)

and isotropic spherical measure30? � # � 
� � 7 � 	 7 � 
 (10)

where 3 4 7 3 : 7 30? ���
(11)

An additional coefficient that describes the combined lin-
ear and planar anisotropy is the anisotropy index defined as
follows: 30@ � 3 4 7 3 : ��� 5 3A? � � �B7 � 	=5C# � 
� � 7 � 	 7 � 
 (12)

Based on the movement of water molecules, diffu-
sion tensor in magnetic resonance imaging(DT-MRI) can
be used to measure the water anisotropy coefficients in
body tissues [11]. Biological tissues can be identified by
regions with one or more high anisotropy measurements. It
helps the detection of diseases and enables physicians and
researchers to better understand and diagnose a wide range
of medical conditions.

3.2 Hyperstreamlines

The concept of hyperstreamlines [1] is generalized as the
propagations of streamlines along one of the eigenvector
fields while the stretching of cross section encodes the other
two orthogonal eigenvector fields. Hyperstreamlines are
called major, medium or minor according to the eigenvec-
tor field followed. All the independent values in symmetric
tensor fields can be fully represented in this way. Just like
streamlines, many hyperstreamlines become a visual clut-
ter that seriously hurt the visualization quality. Thus, in
most practices, only very limited number of hyperstream-
lines are presented as a direct result. The user is no long
able to get a global view and a understanding of the tensor
fields. Figure 1 illustrates major eigenvector field for a ran-
dom generated tensor dataset with (a)15 and (b)400 hyper-
streamlines. The visual clutter problem is clearly demon-
strated.



(a) 15 hyperstreamlines

(b) 400 hyperstreamlines

Figure 1. Hyperstreamlines of major eigenvector field for a
random generated tensor dataset. Color is mapped to major
eigenvalue.

3.3 Seeding Strategies

There are a number of seeding strategies [12] for generat-
ing streamlines. But few can be directly extended to sup-
port hyperstreamlines, among those are regular and random
seeding. For random seeding, one can use uniform ran-
dom seeding, regular seeding with jittering, or Poisson disk
seeding. Poisson disk seeding in physical space is better
suited for curvilinear grids where grid densities may vary a
few orders of magnitude within the same data set.

Our seeding strategy starts with selecting one of the
anisotropy measurement coefficients from 3.1. High mea-
surement values correspond to anisotropy regions except30?

which actually measures spherical isotropy instead. In
practice, biological tissues and fiber structures can be de-
tected by analyzing the linear diffusion
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Then the fiber structures are traced by the hyperstreamlines
that propagate along the principal eigenvector direction.

Once the anisotropy measurement coefficient is cho-
sen, we apply an isosurface extraction algorithm to the
scalar field defined by this anisotropy. There are several
methods for isosurface extraction that we can choose from,
such as brute force method and adaptive partition trees (bi-
nary or octree). During this process, one or more isovalues
that correspond to high tensor anisotropy are used to gen-
erate the surface which identifies anisotropy regions. Fig-
ure 2 shows one slice of linear anisotropy field and the ex-
tracted isosurface from brain dataset.

For the seeding process, the vertices on the extracted
isosurface are used as our seeding template. In addition, a
minimum distance separation between these seeding points
is enforced to ensure that hyperstreamlines will not get too
close to each other. Alternatively, we can place the seeds at
the centers of every triangle or polygon on the isosurface.
The coordinate calculations are inexpensive by just averag-
ing the coordinates of the vertices for each polygon. Hy-
perstreamlines are generated from these seeding positions
and the significant fiber structures are followed accordingly
by tracing major eigenvector field. Optionally, the rest of
the space can be filled by placing random seed points with
Poisson sphere distribution in case minor tensor field fea-
tures other than anisotropy specified biological tissues are
desired.

Post seeding filtering process can also be applied to
achieve better quality. There are various criteria including
geometric properties such as length and angle, and tensor
field properties other than anisotropy that we will explore
in future research.

4 Results

We tested our seeding strategy on two diffusion tensor
fields from DT-MRI data sets. This new imaging tech-
nology was invented to allow physicians and researchers
to better understand and diagnose a wide range of med-
ical conditions. By measuring the 3D motion of water



(a) Anisotropy field

(b) Isosurface(white), largest connected region

Figure 2. Linear anisotropy field of brain dataset and iso-
surface extracted with an isovalue of 0.5. Color is mapped
to linear anisotropy coefficient
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molecules within biological tissues, the anisotropic diffu-
sion properties are studied to reveal the fiber structures. We
applied our hyperstreamline seeding strategy to a human
brain [13][14][15] dataset having 148x190x160 resolution
and a human heart [16] dataset which is of 256x256x256
resolution. These data sets are full 3D grids with 3D dif-
fusion tensor information at each point. Figure 3 is an
example of visualization using hyperstreamlines generated
by random seeding with Poisson sphere distribution. From
this figure, it is very difficult for the user to understand the
dataset or identify the fiber structures due to visual clut-
ter occlusion. Figure 4, 5 and 6 illustrate the result of this
anisotropy based seeding approach when applied to these
two diffusion tensor MRI data sets. For the brain dataset,
white matter fiber structures are effectively detected by us-
ing a linear anisotropy value of 0.5 for the surface extrac-
tion. In the heart muscle, the major and median eigenval-
ues are very close to each other even in the regions corre-
sponding to biological tissues. For this reason, we use the
anisotropy combined from linear and planar coefficients.
The 0.35 anisotropy value also identifies the heart muscle
structure as in figure 6.

In this paper, we use Jacobi’s method [17] to compute
the eigenvalues and eigenvectors. Jacobi iteration is a re-
liable method that produces uniformly accurate eigenpairs
for a symmetric matrix. Using this method, a solution is
guaranteed for all real symmetric matrices.

The hyperstreamline seeding program is written in
C++ and uses OpenGL for graphics, FLTK for the graph-
ical user interface and VTK for the isosurface extrac-
tion(marching cubes). It was tested on a 1.8 GHz Pentium
4 computer with an ATI Radeon 7500 32MB graphics card
and 1GB RAM. It takes approximate one minute for the
whole seeding process and hyperstreamlines generation.

5 Conclusions and Future Work

In this paper, we present a seeding strategy based on
anisotropy measurements for visualizing 3D symmetric
tensor data using hyperstreamlines. This approach enables
automated generation of seeding templates to achieve a bet-
ter visualization quality while still having a global view
over the whole tensor fields. Its main strength is, the use
is not required to have an a priori knowledge of the tensor
field. Prior tensor analysis or general information about the
tensor topology will be helpful but is not required. Some
future directions include: (a) exploring the possibility of
extending this anisotropy based approach on tensor fields
other than diffusion tensor or symmetric tensor, (b) ap-
plying efficient filtering algorithms based on anisotropy or
other tensor properties that can further refine the hyper-
streamlines, (c) combining tensor topology analysis and
tensor property measurements for seeding and clutter re-
duction purposes.



Figure 3. Hyperstreamlines generated from major eigen-
vector field of human brain diffusion tensor dataset. Ran-
dom seeding with Poisson sphere distribution. Color is
mapped to linear anisotropy
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. 500 hyperstreamlines.

Figure 4. Hyperstreamlines generated from major eigen-
vector field of human brain diffusion tensor dataset. A lin-
ear anisotropy measurement value
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is used to ex-

tract the isosurface and form the seeding template. Color
is mapped to linear anisotropy coefficient
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Figure 5. Hyperstreamlines generated from major eigen-
vector field of human brain diffusion tensor dataset. A lin-
ear anisotropy measurement value
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tract the isosurface and form the seeding template. Color is
mapped to

3 4
. 1200 hyperstreamlines.

Figure 6. Hyperstreamlines generated from major eigen-
vector field of human heart diffusion tensor dataset. A sum
of linear and planar measurement value
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is used
to extract the isosurface and form the seeding template.
Color is mapped to anisotropy coefficient
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