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Abstract

Visualization of fourth-order tensors from solid mechanics has not been explored in depth previously. Challenges
include the large number of components (3x3x3x3 for 3D), loss of major symmetry and loss of positive definiteness
(with possibly zero or negative eigenvalues). This paper presents a decomposition of fourth-order tensors that
facilitates their visualization and understanding. Fourth-order tensors are used to represent a solid’s stiffness.
The stiffness tensor represents the relationship between increments of stress and increments of strain. Visualizing
stiffness is important to understand the changing state of solids during plastification and failure. In this work,
we present a method to reduce the number of stiffness components to second-order 3x3 tensors for visualization.
The reduction is based on polar decomposition, followed by eigen-decomposition on the polar "stretch". If any
resulting eigenvalue is significantly lower than the others, the material has softened in that eigen-direction. The
associated second-order eigentensor represents the mode of stress (such as compression, tension, shear, or some
combination of these) to which the material becomes vulnerable. Thus we can visualize the physical meaning of
plastification with techniques for visualizing second-order symmetric tensors.

Keywords: Stiffness tensor, tensor decomposition,
Reynolds glyph.

1. Introduction
Modeling and simulations of static and dynamic behavior
of solids and structures made up of various materials (soils,
concrete, wood, steel, etc.) is a focus of current research
in civil, mechanical and other branches of engineering. In
such modeling and simulations, a pivotal role is played by
the fourth-order 3-D stiffness tensor, which can be derived
for any point inside the domain of interest. Visualization of
fourth-order tensors representing stiffness of solid materials
has not been explored in depth previously. Until now, much
of the visualization community was unaware of the prob-
lem, and the engineering community has had limited visu-
alization tools to study these and other higher order tensors.
One of the purposes of this paper is to introduce this prob-
lem domain to the visualization community. We present the
terminology and describe some of the challenges. Then we
describe and evaluate one method that makes it possible to

filter for the most critical changes in stiffness and visualize
them as second-order tensors.

In early works on physical modeling for computer graph-
ics, it was popular to use gimbal-jointed spring meshes, with
stiffness assigned to springs according to various heuristics.
Very early engineering studies used similar models for anal-
ysis of truss bridges and similar structures. In these oversim-
plified models, stress and strain (roughly, force and deforma-
tion) could be represented as vectors [TF88,VG98]. Stiffness
is the derivative of stress with respect to strain. When stress
and strain are represented as vectors, stiffness is a second or-
der tensor, or matrix. Informally, vectors are first-order ten-
sors and matrices are second-order tensors.

The above models are inadequate for representing the
elastic properties of solids because they cannot account for
shear. To account for shear effects, both stress and strain re-
quire second-order tensors. Then stiffness, the derivative of
stress with respect to strain, becomes a fourth-order tensor.
Because of the symmetries present in the stress and strain
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tensors of natural solid materials, the fourth-order stiffness
tensor has up to 36 independent quantities (rather than 81).

Visualization of 36 dimensional quantities, whether cast
as matrices or tensors, is largely unexplored territory. One
thesis of this paper is that meaningful decompositions are es-
sential to reduce the complexity of a visualization to a level
that allows human comprehension, while preserving the im-
portant information in the simplified representations.

This paper’s approach to visualization is based on analy-
sis of the behavior of stiffness tensors and identification of
properties that indicate susceptibility to failure and other im-
portant changes of material behavior. This reduces the com-
plexity of the visualization task and addresses the specific
need to better understand the physical effects of a changing
stiffness tensor. Readers are encouraged to consult the tech-
nical appendix and animation submitted to this workshop as
supplemental material.

One novelty in the proposed technique is polar decom-
position followed by eigen-decomposition (also called spec-
tral decomposition) producing eigenvalues and eigentensors
or eigenvectors. Polar decomposition is known in the plas-
ticity and mechanics literature, but our use of it to analyze
the stiffness tensor is new, as far as we know. Nielsen and
Schreyer [NS93] showed that eigen-decomposition on the
symmetric part of the stiffness tensor produces information
regarding the mode of a material’s vulnerability to stress.
We are able to obtain other details with our approach. Like
Nielsen and Schreyer, when a significantly low eigenvalue
occurs, we can detect loss of stiffness and the associated
eigentensor that represents the stress mode that will produce
the greatest deformation. The polar decomposition also ap-
pears to tell us about the changing flow direction of perma-
nently deforming material.

Our method is applicable to general elasto-plastic models.
It can also be applied to any material behavior where the
stiffness tensor changes as the loading progresses (pressure
sensitive elasticity, damage, etc.).

2. Related Work
Related work falls into two categories; visualization and
solid mechanics methods. For visualization we look at some
current approaches for visualizing second-order and fourth-
order tensors.

For solid mechanics we look at the motivation for vari-
ous methods to decompose the fourth order stiffness tensor,
particularly when major symmetry is lost.

2.1. Related Visualization Techniques
A substantial part of our visualization involves the use of
Reynolds glyphs and extensions. Here we review previous
work along these lines.

Ellipsoidal glyphs have long been used to represent
second-order symmetric tensors with applications in engi-
neering. Hashash et al. [HYW03] provides a good overview
of the glyphs used in solid mechanics with a list of advan-
tages and shortcomings of each. They use color to show the
magnitude of the vector from the origin to the surface points.
We extend the color scheme to cover both negative and pos-
itive values of vector length since shape alone is ambiguous.

In HOT-lines, Hlawitschka and Scheuermann [HS05]
used spherical harmonics to compute Reynolds glyphs more
efficiently. Their method could be applied to fully symmet-
ric tensors of even order on a regular grid, and were ap-
plied to fourth-order diffusion tensors from Magnetic Reso-
nance Imaging (DT-MRI) data. The spherical harmonics also
helped detect global maxima which represented direction of
major eigenvectors for fiber tracking in DT-MRI [HS05].

Kriz et al. also used a fourth-order Reynolds glyph
representation for materials [KGM95]. The representation
came from Christoffel’s equation for waves propagating in
anisotropic media. The shape of the glyph is mapped to wave
velocity magnitude or the eigenvalues, while the color on the
glyph is mapped to vibration direction or eigenvectors.

In a recent paper, Basser and Pajevic [BP07] applied
eigen-decomposition to a fourth-order symmetric covariance
tensor for use in DT-MRI. The resulting eigentensors and
eigenvalues were used to represent and visualize variabil-
ity. The authors also noted that the mathematical underpin-
nings of these eigentensors were from Lord Kelvin’s work
to identify modes of deformation in linear elastic material
and classify symmetries in anisotropic materials. Basser and
Pajevic visualized the second-order eigentensors and fourth-
order covariance tensors as Reynolds glyphs. While the de-
composition was applied to fully symmetric positive definite
covariance tensors, it motivated our own research with re-
spect to more general fourth-order stiffness tensors.

2.2. Related Decomposition Methods

Neilsen and Schreyer were the first to use eigen-
decomposition to determine deformation modes associated
with materials breaking (bifurcation) [NS93]. Their crite-
rion for bifurcation was loss of positive definiteness. They
performed eigen-decomposition on sym(E), the symmetric
part of stiffness tensor E, since a E is positive definite if and
only if sym(E) is positive definite. When positive definite-
ness was lost, they used the eigentensor of the zero eigen-
value of sym(E) as the mode of bifurcation. This occurs be-
fore E becomes singular, which was the previous criterion.
However, the eigentensor of sym(E) is not necessarily an
eigentensor of E itself.

This paper uses polar decomposition to obtain a different
symmetric component of E for eigen-decomposition. The
technical appendix shows that when the polar symmetric
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component has a zero eigenvalue, the associated eigenten-
sor is also an eigentensor of the stiffness tensor itself. This
provides an alternate representation of the failure mode.

3. Modeling Elasticity and Plasticity of Solids
Mechanical engineers model the elastic and plastic proper-
ties of solids with tensors of various orders. This section re-
views tensor notation, conventions, and operations. Then the
basics of modeling solids are stated, and modeling issues are
discussed.

3.1. Tensor Notation and Operations
Tensors are linear operators that can be represented as multi-
dimensional arrays of coefficients. For 3-D solids, a fourth-
order tensor is a 3×3×3×3 array, a second-order tensor is a
3×3 array, etc. The order of a tensor is the same as the num-
ber of subscripts needed to write a typical element. Thus, if
E is a fourth-order tensor, a typical element is denoted by
Ei jk`. Scalars, vectors, and matrices represent tensors of or-
ders zero, one, and two, respectively.

Operations using tensors are usually denoted using the
Einstein convention that repeated indices in different tensors
are implicitly summed; e.g., matrix multiplication is denoted
as Ci j = Aik Bk j, rather than the explicit equation,

Ci j = ∑
k

Aik Bk j. (1)

This operation is called a single contraction in tensor termi-
nology.

In elasticity (and many other physical processes) the dou-
ble contraction operator is important. It is denoted by “:”
as an infix symbol, and involves summing over two indices,
e.g.,

Ci j = A : B = Ai jk` Bk` = ∑
k

∑̀Ai jk` Bk`. (2)

Double contraction can also be applied to two fourth-order
tensors, yielding a new fourth-order tensor.

Where many operations on first and second order tensors
use single summation, their generalizations to second and
fourth order tensors use double summation. The above ex-
ample of double contraction is thus the generalization of
multiplying a matrix by a vector. Two important cases are
the scalar inner product, Ai j Bi j , and the dyad or outer prod-
uct, Ai j Bk` that results in a fourth-order tensor.

3.2. Stress, Strain and Stiffness
In 3-D, stress is force per unit area, strain is fractional
change in length (e.g., a strain of .001 means a length L
increased to 1.001L), and stiffness is the ratio of stress to
strain. Since strain is dimensionless, stiffness has the same
units as stress.

Table 1: How a stiffness tensor can change with increasing
stress.
Material Behavior Stiffness Tensor Properties

elastic symmetric positive-definite
elastic-plastic asymmetry eigenvalue reduction, non-

singular if hardening
failure, localized asymmetry non-positive definite, possi-

bly singular

A solid object such as a steel spring stretches when a
tension force is applied, and returns to its original length
when the force is removed. This means that upon unload-
ing (removing the force) all the deformation (except possi-
bly rigid motion) is recovered; i.e., the solid returns to its
original shape. Hooke’s Law [Lov44] describes this simple
case. More generally, the material’s stress-strain relationship
is described by the constitutive equation:

σi j = Ei jk` εk` (3)

where σi j is a second-order symmetric stress tensor, εk` is
a second-order symmetric strain tensor, and E ≡ Ei jk` is
the fourth-order stiffness tensor. Indices i, j,k, ` range over
1,2,3 and represent three orthogonal spatial axes, x, y, and
z.

3.3. Stiffness Changes
Solid materials undergo a sequence of changes under in-
creasing loads. In general, increasing loads beyond what is
called the elastic limit induce changes in the stiffness tensor
described in table 1.

3.3.1. Elastic Strain Increment
As an example of elastic deformation, imagine a paper clip:
it will (elastically) change shape to hold a small stack of pa-
pers, suffering virtually no permanent deformation after the
papers are removed. Theories of plasticity typically presume
that there exists some contiguous domain of stress levels for
which permanent (non-recoverable) deformation is negligi-
ble. However, it is not assumed that the stress/strain rela-
tionship is linear within this elastic limit. Therefore the con-
stitutive equation is generalized to express the relationship
incrementally with the tangent stiffness tensor:

σ̇i j = Ei jk` ε̇k` (4)

where σ̇i j is a second-order symmetric stress increment ten-
sor, ε̇k` is a second-order symmetric strain increment tensor,
and E ≡ Ei jk` is the fourth-order tangent stiffness tensor. As
before, indices i, j,k, ` range over 1,2,3 and represent three
orthogonal spatial axes, x, y, and z.

3.3.2. Elastic-Plastic Strain Increment
When a paper clip is deformed by a large amount, only a
portion of the deformation is recovered upon removal of the
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load. As discussed by Brannon [Bra07], this familiar obser-
vation is generalized in plasticity theory by additively de-
composing the strain increment into two parts: a recoverable
elastic part plus a permanent plastic part.

3.3.3. Yielding and Plastic Strain Increment
Materials modeled as elastic-plastic are characterized by a
yield function, f (σi j), a function of stress. The yield crite-
rion, which delineates points at which stress causes elastic-
plastic deformation versus pure elastic deformation is de-
fined at

f (σi j) = 0 (5)

The yield surface is the zero isosurface of the yield func-
tion. It is a convex surface in six-dimensional stress space.
Stress states on the interior of the yield surface correspond
to elasticity, while stress states outside the yield surface are
unattainable except via plastic loading.

Elastic-plastic materials are also often characterized with
a plastic flow function. Like the yield function, this is a func-
tion of stress, and its gradient describes the direction of plas-
tic flow, in stress space. In associated (or normal) elasto-
plasticity, the flow direction (i.e., the direction of the plastic-
strain increment) is parallel to the yield surface normal while
non-associated plastic flow can deviate from the normal.

3.3.4. Hardening and Softening
Classical equations of plasticity theory [Bra07] model the
stress increment as a fourth-order elastic-plastic tangent
stiffness tensor acting on the total strain increment. In the ab-
sence of elastic-plastic coupling, associativity corresponds
to symmetry of the elastic-plastic tangent stiffness. For a
non-hardening material, the yield surface is fixed and, there-
fore, the stress increment during plastic loading is con-
strained to move tangent to the yield surface. In this case,
the elastic-plastic tangent stiffness tensor is a positive-semi-
definite rank-1 projection operator that essentially removes
the part of the elastic stress increment that points outside the
yield surface.

For a hardening material, the yield surface can expand
outward away from the stress so that increasingly high levels
of stress are required to continue plastic loading. In this case,
the elastic-plastic tangent stiffness tensor is positive definite
and invertible.

For a softening material,the yield surface contracts in the
neighborhood of the stress, so diminishing stresses are re-
quired to continue plastic loading. In this case, the elastic-
plastic tangent stiffness tensor can become non-positive defi-
nite because there exist strain increment modes that decrease
the stress level required for continued plastic loading. De-
pending on the nature of the loading, softening can lead to
an instability in the material response that is characterized by
intense localization of the deformation into narrow bands.

Mathematically, the onset of such behavior is determined
by examining properties of the fourth-order elastic-plastic
tangent stiffness tensor.

3.3.5. Localized Failure
With enough bending force, a paper clip will deform perma-
nently and eventually break. According to early literature a
solid (in this case a clip) is said to fail locally when the stiff-
ness tensor is singular. Here, locally means that the material
breaks or liquefies at a set of points or region inside the do-
main [MH79,NS93,RMW96]. Singularity is identified by at
least one zero eigenvalue. Later literature identified localized
failure at the point of loss of positive definiteness [NS93]. A
primary goal of this visualization work is to filter the field of
evolving tangent stiffness tensors to identify those that are
near or beyond the localization threshold and to then visual-
ize the corresponding modes of susceptibility to failure.

4. Approach
Our approach is to filter the tensor field from a single time
step for the plastic part of deformation and then visual-
ize second-order tensors representing the modes of change
in stiffness (hardening or softening elasto-plasticity). These
second-order tensors are calculated via the following steps

1. Unroll the 3 tensor into a 6×6 matrix.
2. Perform a polar decomposition on the 6×6 matrix, pro-

ducing two 6× 6 matrices, called the rotation part and
the stretch part, which is symmetric.

3. Perform a eigen-decomposition on the stretch part of the
polar decomposition, yielding 6 eigentensors and 6 real
eigenvalues.

4. Select a single eigentensor and compose it from a 6-D
vector into a symmetric 3×3 tensor.

5. Visualize the second-order eigentensor with a glyph that
shows its structure and also reflects its eigenvalue.

4.1. Unrolling Tensors
Numerical methods for eigen-decomposition and polar de-
composition only exist for matrices (rather than fourth-order
tensors). The fourth-order stiffness tensor Ei jk` (represent-
ing both elastic and plastic components of stiffness) is trans-
formed into a 6×6 matrix E, called the Mandel components.
Other 6×6 matrices and 6-vectors computed during the pro-
cessing can be converted back into fourth-order tensors and
symmetric second-order tensors, respectively.

The straightforward representation of a 3×3 tensor would
be as a 9-vector with one component for each tensor element.
As applied first by Mandel, and later rigorously justified by
others [Man62, Its00, Hel01, Tar06, Bra07], due to the sym-
metry of the 3× 3 tensor space of interest, an orthonormal
change of basis can force the last three components of the
9-vector to be zero. This orthonormal change of basis in 9-D
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simply consists of 45◦ 2-D degree rotations on the three pairs
of vector components that correspond to symmetric pairs of
off-diagonal tensor elements. Similarly, if the set of trans-
formations is restricted to those that produce symmetric re-
sults, after applying the orthonormal change of basis, a 6×6
matrix suffices. The equations are given in the technical ap-
pendix submitted as supplemental material.

4.2. Application Constraints
Our proposed method can be applied to stiffness tensors for
a constrained set of solid mechanical simulations. It is ap-
plicable to general elasto-plastic models, and it can also be
applied to any material behavior where the stiffness tensor
changes as the loading progresses (pressure sensitive elas-
ticity, damage, etc.).

However, the method is based on small deformation the-
ory, and is not applicable to simulations outside this theory.
“Small deformation” refers to problems with only small dis-
placement gradients. This means that the stiffness tensors are
cast with respect to the reference configuration such that any
changes in stiffness associated with rigid material rotation
are eliminated from consideration. Another limitation is that
the current visualization relies on the second-order tensors
being symmetric, which constrains the fourth-order stiffness
tensor to exhibit minor symmetry.

5. Polar Decomposition of Fourth-Order Tensors
Polar decomposition is a technique to separate a matrix into
two component matrices, E = QS, where S is a pure stretch
(symmetric positive-semidefinite matrix), and Q is a pure
rotation (orthonormal matrix) [Hig86, Gan90, HS90, HP94,
ZZ95, GVL96]. As described in Section 4, we compute on
tensors by transforming them into matrices and vectors. We
believe that polar decomposition in this space is new. This
section describes how we use the results of the polar decom-
position for analysis and visualization of solid mechanics
simulations.

The technical appendix, submitted as supplemental ma-
terial, reviews technical details on a new computational
method for the polar decomposition in the presence of ill-
conditioning or singularity [VG08]. As described below, this
case is central to our methodology, and we did not find pre-
viously published methods to be satisfactory.

5.1. Polar Stretch and Mode of Vulnerability
Eigen-decomposition is performed on S, the stretch matrix
component of the polar decomposition. This can be done us-
ing the LAPACK library [ABD∗90]. We analyze the eigen-
decomposition of S to find the eigenvector associated with
its smallest eigenvalue. Converting this eigenvector to a sym-
metric second-order tensor (the reverse of unrolling), we in-
terpret this tensor as a mode of strain. Being an eigentensor,

after multiplying by the eigenvalue, it is the corresponding
mode of stress. This is expected to be the mode to which the
material is most vulnerable to failure.

The initial eigenvalues of stiffness are based on the bulk
modulus and shear modulus of the material, and the initial
stiffness matrix is a pure stretch; i.e., its rotation component
is the identity.

Upon inelastic loading, the stiffness may change in a man-
ner such that resistance to certain stress increments is con-
siderably diminished. A polar decomposition of E quantifies
this degradation. Eigenvalues of S (the “stretches”) are larger
than their initial values if the material has stiffened. They are
smaller if it has become more compliant. The corresponding
eigentensors of S represent loading modes. Suppose, for ex-
ample, the stretch eigenvector associated with the smallest
eigenvalue is [0, 0, 0, 1, 0, 0]T (vectors are column vectors).
The corresponding normalized stretch eigentensor is:





0 0 0
0 0

√

1/2
0

√

1/2 0





This is a pure shear. If the corresponding eigenvalue is 0.75
of its initial value, then the material is 25% less resistant
(stiff) to that particular loading mode than it was initially.
Selecting the lowest stretch eigenvalue can therefore reveal
which regions are suffering significant plastic loading even
in a multi-material simulation. As the stiffness matrix ap-
proaches singularity, having a robust computation proce-
dure, as described in the technical appendix, becomes cru-
cial. An eigenvalue approaching zero is considered to be a
failure mode for the material.

If E is nonsingular but with negative eigenvalues, the
physical meaning of the polar decomposition is unclear. In
this case, a symmetric-antisymmetric decomposition could
still be used, but its meaning would also be unclear. The oc-
currence of a negative eigenvalue in the stiffness matrix cor-
responds to dynamic softening instability, corresponding to
a change in type for the differential equations of motion. The
stiffness at a point becomes no longer physically meaning-
ful because the process becomes scale dependent. Therefore,
any points in the domain having a negative stiffness should
be filtered out of the visualization on physical grounds unless
the strain increment at that point belongs to the eigenspace
of the stiffness associated with positive stiffness eigenvalues.

5.2. Polar Rotation and Elasto-Plastic Materials
The rotation part of the polar decomposition also carries in-
teresting information. As we have mentioned in Section 3.3,
elastic-plastic materials are characterized by a yield func-
tion and a plastic flow “direction”. In the case of associated
elasto-plasticity, the flow “direction” is perpendicular to the
“surface” on which the yield function is zero. In this case
there is no rotation component (Q mentioned at the begin-
ning of this section is the identity). We have put “direction”
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and “surface” in quotation marks because we are operat-
ing in stress space, which is either the space of symmetric
second-order tensors or their unrolled versions, which are
6-vectors. Thus “direction” and “surface” do not have their
usual 3-D meanings.

We conjecture that for non-associated materials, the po-
lar rotation (in 6-D) quantifies the degree of misalignment
of the yield surface normal and the flow direction. In other
words, we conjecture that applying the polar rotation to the
yield surface normal produces the flow direction to a good
approximation. This conjecture has been confirmed anecdo-
tally, but it requires further empirical and theoretical evalua-
tion.

6. Eigentensor Glyphs and Physical Meaning
Reynolds glyphs visually depict characteristic modes of
stress or strain [BP07]. The formula for a point on the sur-
face of the second-order Reynolds glyph is (tensor notation
is reviewed in Section 3.1):

σN = ni σi j n j (6)

where i, j ranges over 1,2,3 and 1,2,3 are orthogonal axes. n
is a vector of the direction cosines perpendicular to the plane
of interest for a ray of unit length.

Stress is characterized by five basic modes, and a stress
tensor may represent a pure mode or some combination of
them. The modes are:

1. spherical tension (three equal positive eigenvalues)
2. spherical compression (three equal negative eigenvalues)
3. triaxial compression (two equal eigenvalues with the

distinct eigenvalue more compressive than the repeated
eigenvalues)

4. triaxial tension (two equal eigenvalues with the distinct
eigenvalue less compressive than the repeated eigenval-
ues)

5. pure shear (one zero eigenvalue, with the others equal and
opposite in sign)

An isotropic stress (with three equal eigenvalues) cor-
responds to a spherical Reynolds glyph (figure 1a). This
case is similar to isotropy for DT-MRI [WPG∗97] but we
can represent either compression or tension, distinguished
by color. Triaxial tension or triaxial compression produce
an axisymmetric stress (symmetric about one axis) and is
characterized by two equal eigenvalues. In this case, for-
mula 6 produces an axisymmetric Reynolds glyph with the
axis of symmetry aligned with the eigenvector of stress cor-
responding to the distinct eigenvalue (figure 1b). The disk
shape in figure 1b is similar to planar anisotropy for DT-
MRI second-order tensors, also characterized by two equal
eigenvalues [WPG∗97].

A state of pure shear stress (where one eigenvalue is zero
and the other two are equal and opposite in sign) produces a

Spherical Tension Triaxial Compression Pure Shear
(a) (b) (c)

Figure 1: Reynolds Glyph representations of modes of stress.
Cool colors (blue and cyan) represent negative values, hot
colors (red and yellow) represent positive. X, Y, Z axes are
red, green, blue.

glyph such as the one in figure 1c. The distinct butterfly ap-
pearance of pure shear is caused by equal magnitude and op-
posite values across orthogonal directions on a single plane.

Compared to the second-order glyphs for DT-MRI appli-
cations [WPG∗97,Kin04], we see a larger number of distinct
shapes because stretching constants can take both negative
and positive values. Stress, strain and eigentensors glyphs
need not be simple ellipsoids. Negative values serve to push
the vector n from equation 6 in the reverse direction relative
to the center of the sphere. However, like DT-MRI glyphs,
they will be symmetric since the tensors they represent are
symmetric. We also use a color mapping that covers both
negative and positive values, to distinguish between tension
and compression. This is unnecessary for diffusion tensor
data.

7. Results
We tested our technique on two simple experiments from
geomechanics. Both experiments consisted of 224 finite el-
ements, each with 8 integration points on an irregular grid
(a total of 1792 points for the volume). The experiments
were run on OpenSees, a finite-element simulator for per-
formance of structural and geotechnical systems subjected
to earthquakes [Ope05]. Data for the visualization was gath-
ered during the runs, which took 10.5–12 minutes on an Intel
6600 2.4 Ghz dual core desktop with 2.0 gigabytes of RAM.
The visualization runs at 1–4 frames per second, depending
on window size. Excerpts are shown in the figures. The soft-
ware and experiment scripts are available from the authors
and will soon be available through the VEES project web-
site [Nee08].

The experiments started with self-weight analysis of the
soil, compressing along −Z, for 25 time steps. This is a com-
mon practice when studying soil behavior. The initial com-
pression from the soil’s own weight induces deformation and
may also change the stiffness, depending on the model. The
second part of the experiment was two point loads on the
top of the volume. The loads included a small component
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Figure 2: Color-mapped displace-
ments, time step 124, Drucker-Prager
material. Color map is clamped at
0.08. X, Y, Z axes are red, green, blue.

Figure 3: Top view (Z from above) of
eigentensors for Drucker-Prager ma-
terial, time step 124, colored by mini-
mum “stretch” eigenvalue.

Figure 4: Eigentensors for Dafalias-
Manzari material, time step 124.
Black cubes denote negative eigenval-
ues. Color map clamped at 60623.

along −Z (0.9659 kiloNewtons) and a large lateral compo-
nent (1294 kiloNewtons). This part of the experiment ran
for another 100 steps. Figure 2 shows the volume colored
by displacement (Euclidean distance from inital position) on
the last time step. The black arrows point to where the loads
were applied along +X.

In Figs. 3 and 4, we drew glyphs for each integration point
in the volume and the glyph size was scaled by the size of the
encapsulating finite element. These eigentensor glyphs were
colored by the lowest eigenvalue and scaled across all time
steps to give an overall idea of softening or hardening. We
used a special glyph for the case of a negative eigenvalue
in the stiffness tensor (a black cube) so the engineer could
quickly identify singularity and the inability of the simulator
to produce the mode of the instability.

The first soil material was Drucker-Prager. The mate-
rial simply fails under tension, but remains unchanged un-
der compression (a non-hardening material). There were no
changes in the material during the self-weight steps. The ma-
terial experienced compression in front of the point loads
and the reverse (tension) behind the point loads. There is
a trail of points that have undergone singularity behind the
point loads. The green and cyan glyphs indicate zero and
very slightly negative lowest eigenvalues, respectively (see
Fig. 3). These glyphs show a clear change in orientation in-
dicating the mode of failure.

The second simulated material was Dafalias and Man-
zari’s plasticity sand model [DM04]. The model’s stiffness is
pressure-dependent and non-associated. In order to make the
experiment repeatable we used the material constants given
in the article, with the exception of the initial void ratio (e0).
This material softens when it is denser (with smaller void ra-
tios). Since we wanted to test our method’s ability to detect
softening, we reduced the e0 to 0.65. In this experiment, self-
weight induced hardening. The greatest hardening occurred
at the bottom of the volume, where the finite-element nodes

were fixed and experiencing the greatest load from above. At
first, stiffness increased with the depth of the volume, as ex-
pected with self-weight loading. With continued self-weight
softening occurred in the volume we saw some integration
points with negative eigenvalues. As the experiment con-
tinued, softening occurred along the side boundaries of the
volume, but there was frequent change between elastic and
elastic-plastic states. It was difficult to correlate the stress
to the behavior because of the changing yield surface and
nonassociativity. Another issue was that isotropic hardening
and softening were represented by the eigentensor associated
with the smallest eigenvalue, but with isotropy there are five
equal eigenvalues so its orientation was random. However,
we did notice softening on the top surface near the applied
point loads late in the experiment (Fig. 4).

8. Conclusions and Future Work
A meaningful decomposition is an essential first step toward
toward visualizing fourth-order tensor fields. In this work,
we presented a decomposition method robust to loss of ma-
jor symmetry and approaching singularity. As a result, engi-
neers have the ability to visualize the critical mode of stress
and reduction in stiffness across a volume. Many challenges
remain. In some cases, a material may have more than one
mode in which it softens, and there is as yet no technique
to visualize a field that has multiple second order tensors
at each location. Continuous visualization techniques tensor
fields representing non-symmetric and non-positive definite
tensors have not yet appeared, and interpolation techniques
for irregular grids of finite elements could be improved. In
many cases it is critical to respect internal element bound-
aries; shared faces may represent the border between two
discrete materials, such as layers of sand and clay. Finally,
we still have not attempted dealing with Large Deformation
Theory. We plan to attack some of these problems in the near
future and hope that this early work will open the door to
these new challenges.
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Technical Appendix for “Decomposition and
Visualization of Fourth-Order Elastic-Plastic Tensors”
These appendix sections provide additional technical details
that could not be included in the proceedings paper, due to
space limitations. In the interest of self-containment, we first
review some tensor basics.

Tensor Notation and Operations
Tensors are linear operators that can be represented as multi-
dimensional arrays of coefficients. For 3-D solids, a fourth-
order tensor is a 3×3×3×3 array, a second-order tensor is a
3×3 array, etc. The order of a tensor is the same as the num-
ber of subscripts needed to write a typical element. Thus, if
E is a fourth-order tensor, a typical element is denoted by
Ei jk`. Scalars, vectors, and matrices represent tensors of or-
ders zero, one, and two, respectively.

Operations using tensors are usually denoted using the
Einstein convention that repeated indices in different tensors
are implicitly summed; e.g., matrix multiplication is denoted
as Ci j = Aik Bk j, rather than the explicit equation,

Ci j = ∑
k

Aik Bk j. (7)

This operation is called a single contraction in tensor termi-
nology, and is often denoted by “·” as an infix symbol.

In elasticity (and many other physical processes) the dou-
ble contraction operator is important. It is denoted by “:”
as an infix symbol, and involves summing over two indices,
e.g.,

Ci j = A : B = Ai jk` Bk` = ∑
k

∑̀Ai jk` Bk` (8)

Double contraction can also be applied to two fourth-order
tensors, yielding a new fourth-order tensor.

Where many operations on first and second order tensors
use single summation, their generalizations to second and
fourth order tensors use double summation. The above ex-
ample of double contraction is thus the generalization of
multiplying a matrix by a vector. Two important cases are
the scalar inner product, Ai j Bi j , and the dyad or outer prod-
uct, Ai j Bk` that results in a fourth-order tensor.

Appendix A: Unrolling Plasticity Tensors to Matrices and
Vectors

Operations on fourth-order 3-D tensors with minor symme-
tries are more conveniently computed and analyzed by a
transformation to 6×6 matrices. Recall that the minor sym-
metries are Ei jk` = E jik` = Ei j`k = E ji`k. Symmetric second-
order tensors are transformed into 6-vectors. As explained
below, under this transformation, the usual linear-algebra
vector and matrix operations correspond to the tensor op-
erations involving double contraction (eq. 8); single con-
traction and dyad formation (“zero” contraction) also cor-

respond to 6-D vector operations. This transformation is in-
formally called unrolling.

Numerical methods for eigen-decomposition and polar
decomposition only exist for matrices (rather than fourth-
order tensors). Therefore it is computationally advantageous
to represent second-order tensors as vectors and linear trans-
formations on second-order tensors as matrices. (The natural
representation of a linear transformation from second-order
tensors to second-order tensors is a fourth-order tensor.)

The straightforward representation of a 3×3 tensor would
be as a 9-vector with one component for each tensor element.
As applied first by Jean Mandel, (“Ondes plastiques dans un
milieu indéfini à trois dimensions,” Journal de Mécanique,
Vol. 1 (1962), pp. 3–30), and later rigorously justified by
others, (see main paper for citations), due to the symmetry
of the 3×3 tensor space of interest, an orthonormal change
of basis can force the last three components of the 9-vector
to be zero. This orthonormal change of basis in 9-D simply
consists of 45◦ 2-D degree rotations on the three pairs of
vector components that correspond to symmetric pairs of off-
diagonal tensor elements.

Similarly, the straightforward representation of a linear
transformation on 3×3 tensors would be a 9×9 matrix, but
if the set of transformations is restricted to those that produce
symmetric results, after applying the orthonormal change of
basis, a 6×6 matrix suffices.

In summary, as long as the physical quantities of inter-
est have the structure of symmetric 3×3 tensors, the corre-
sponding vectors can be 6-D instead of 9-D, and linear trans-
formations of such tensors can be represented with 6×6 ma-
trices. Because the tensors used in the models we visualize
always enjoy the minor symmetries, the transformation into
6-D suffices, and is described here.

The first part of the unrolling involves a mapping from
single indices in the range 1, . . . ,6 into pairs of indices in the
range 1,2,3.

k 1 2 3 4 5 6
µ(k) (1,1) (2,2) (3,3) (1,2) (2,3) (1,3)

(9)

Other orders of the last three pairs are acceptable, but one
order must be used consistently. Note that µ−1 is well de-
fined and maps pairs of indices into single indices. Minor
symmetries dictate values for tensor elements whose index
pairs do not appear in the table.

Let I3 and 03 denote the 3× 3 identity matrix and zero
matrix. With the above notation we define the 6×6 matrix E
that represents the unrolling of the fourth-order tensor Ei jk`:

E =

[I3 03

03
√

2 I3

]







Eµ(1),µ(1) · · · Eµ(1),µ(6)
...

...
Eµ(6),µ(1) · · · Eµ(6),µ(6)







[I3 03

03
√

2 I3

]

(10)

Similarly, the 6-D column vector s that represents the un-
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rolling of the second-order tensor Si j is given by:

s =

[

I3 03
03

√
2 I3

]







Sµ(1)
...

Sµ(6)






(11)

To recover tensors from matrices and vectors, simply use the
inverse of the scaling matrix and the inverse of µ .

Appendix B: Polar Decomposition of Plasticity Matrices

Once we have a tensor in matrix form we can perform po-
lar decomposition. The method described here is designed to
be robust in the presence of a very small or zero eigenvalue.
Experience has shown that another published method per-
forms poorly in these situations. The method we use follows
a recent paper (A. Van Gelder, “Relaxed Jordan Canonical
Form for Computer Animation and Visualization,” submit-
ted for publication July 2008, available from the author), and
is described here for self-containment. For our application,
we assume that the matrix is square, the determinant is non-
negative, and there is at most one eigenvalue that is zero. In
particular, we are not aware of any interpretation of the polar
decomposition in this application when detE < 0, and do not
perform polar decomposition in this case.

The polar decomposition on the n×n square matrix E is
defined as

E = QS (12)

where Q is an orthogonal matrix and S is a symmetric posi-
tive semidefinite matrix. (Conventionally, the term “orthog-
onal” in this context includes the requirement that rows and
columns be unit-length, besides being pairwise orthogonal.)
If the determinant of E is nonnegative, then the determinant
of Q is +1. The main paper cites previous methods in the
literature, which are either more complicated or more re-
stricted than the method we adopt, described below.

It is well known that the decomposition is unique for
detE > 0. If E has one eigenvalue of 0, the decomposition
is still unique with the specification that detQ = +1. (Proofs
of this and other claims in the appendix are available from
the authors in manuscript.) In all cases the S part of the de-
composition is unique.

The steps are summarized in the following equations,
where Q and S are unknown until they appear on the left
side of an equation, and “≡ introduces a definition of an un-
known. A single subscript on a matrix denotes a column of
that matrix.

M = ET E = ST S = S2

M = TJTT where J is diagonal, ascending order
S = T

√
JTT where

√
J is nonnegative

C ≡ QT
B = ET = QST = C

√
J

C j = B j /
√

J j j for j = 2, . . . ,n
C1 = Gram-Schmidt completion of 6-D orthonormal basis
Q = CTT

S = sym
(

Q−1 E
)

Higham recommends the same computation as the last line,
except using QT in place of Q−1, and in theory they are
equal. We obtain slightly more accuracy with Q−1. In the
Gram-Schmidt completion on the next to last line, replace
the column C1 with −C1 if detC and detT have opposite
signs. The Jacobi method is very robust and accurate for the
computation of eigenvalues and eigenvectors on the second
line.

The correctness of the procedure is shown in the cited
paper and follows from well known linear algebra proper-
ties of real symmetric matrices; in particular, M is positive
semidefinite and T can be chosen to be orthogonal, so that
TT = T−1.

As applied in this paper, n = 6 and the 6× 6 matrix be-
ing decomposed is usually the plastic stiffness matrix, which
results from unrolling the plastic stiffness tensor (see Ap-
pendix A). If there is an eigenvalue of zero for S, its eigen-
vector is found in column one of T; in this case, that column
is also an eigenvector for the zero eigenvalue of the stiffness
matrix and is of special interest. In addition, the matrices T
and

√
J, which are by-products of the decomposition proce-

dure, are useful for various simulations.

Appendix C: Isotropic Stiffness Matrix

Many materials exhibit isotropic elasticity properties. For
such materials the stiffness tensor can be expressed in terms
of two parameters, K, the bulk modulus, and G, the shear
modulus. The stiffness matrix (unrolled stiffness tensor, see
Appendix A) for isotropic materials is given by

E =





















K + 4
3 G K− 2

3 G K− 2
3 G 0 0 0

K− 2
3 G K + 4

3 G K− 2
3 G 0 0 0

K− 2
3 G K− 2

3 G K + 4
3 G 0 0 0

0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G





















(13)

The eigen-decomposition for isotropic stiffness plays an im-
portant role in the visualization. One eigenvalue is 3K and
the other five are 2G. The eigenvector for 3K is [1, 1, 1, 0, 0,
0]T . All 6-vectors orthogonal to this vector are eigenvectors
for 2G; they span a 5-D subspace.
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