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ABSTRACT

Tensor topology is useful in providing a simplified and yet detailed
representation of a tensor field. Recently the field of 3D tensor
topology is advanced by the discovery that degenerate tensors usu-
ally form lines in their most basic configurations. These lines form
the backbone for further topological analysis. A number of ways
for extracting and tracing the degenerate tensor lines have also been
proposed. In this paper, we complete the previous work by studying
the behavior and extracting the separating surfaces emanating from
these degenerate lines.

First, we show that analysis of eigenvectors around a 3D degen-
erate tensor can be reduced to 2D. That is, in most instances, the 3D
separating surfaces are just the trajectory of the individual 2D sepa-
ratrices which includes trisectors and wedges. But the proof is by no
means trivial since it is closely related to perturbation theory around
a pair of singular state. Such analysis naturally breaks down at the
tangential points where the degenerate lines pass through the plane
spanned by the eigenvectors associated with the repeated eigenval-
ues. Second, we show that the separatrices along a degenerate line
may switch types (e.g. trisectors to wedges) exactly at the points
where the eigenplane is tangential to the degenerate curve. This
property leads to interesting and yet complicated configuration of
surfaces around such transition points. Finally, we apply the tech-
nique to several common data sets to verify its correctness.
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1 INTRODUCTION

The goal of topological analysis is to provide a simple yet powerful
representation of the complex phenomena described by the data.
The topological structures make it simple for users to understand
the underlying data fields yet are sensitive enough to capture im-
portant features. Early work on using topology based method to
visualize vector and tensor fields are proposed by Hesselink et al.
[2, 3]. It defines the tensor topology based on degenerate features,
discusses its nature in 2D cases in great detail. Only until recently,
we discovered that degenerate tensors form curves in its most ba-
sic configuration, and proposed a stable algorithm to extract such
features [10]. We also proposed a formula to obtain the analyti-
cal tangent of the degenerate feature lines at each point [11]. This
method gives us the power to obtain the topologically correct solu-
tion of the feature line and high resolution feature lines with little
extra computational cost.
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This paper is the second installment of [10] and completes the
analysis of stable degenerate features in second order 3D symmet-
ric tensor fields. Given the extracted degenerate feature lines and
the knowledge that they serve as the critical features in 3D tensor
topology, we study the topological structure of 3D tensor field. The
first step in topological analysis of a certain type of data is to study
their behavior near a critical feature. In this paper, we first show that
the eigenvectors around a degenerate tensor can be approximated
as those of the projected tensor on the repeated plane. A repeated
plane of a degenerate tensor is the plane spanned by the eigenvector
with the same eigenvalues. Note that the repeated plane is not nec-
essarily perpendicular to the degenerate curve. But, all vectors on
this plane are valid eigenvectors. This fact simplifies the analysis
of 3D tensor field around a degenerate curve into a series of indi-
vidual analysis of 2D tensor field around a 2D degenerate point.
Such analysis naturally breaks down when the degenerate curves
are tangential to the repeated plane. But as we will show later, a
very interesting property of points on the degenerate curves where
the curve is tangential to the repeated plane is that they are exactly
where the degenerate points switch types. Such type transitions are
closely related to the study of time-varying 2D degenerate tensor
fields [7], and leads to complicated yet interesting configuration of
separating surfaces near such transition points.

This paper is intended to lay down a theoretical foundation for
tensor field analysis. We also test our findings using several syn-
thetic but commonly used benchmark data sets to verify their cor-
rectness. However, since the field of 3D tensor topology is still in
a very fundamental stage of research, it is too early to evaluate its
effectiveness on real data sets. We can predict that blindly applying
the technique proposed from this paper on noisy real datasets such
as DT-MRI data sets will result in hefty visual clutter of degenerate
features and even more complicated separating surfaces. However,
such difficulties are not insurmountable. It is not a fundamental
flaw of the topological approach, but rather a lack of current un-
derstanding on what is really important. We believe that once we
obtain sufficient knowledge and understanding of 3D tensor topol-
ogy, the representation and visualization can be greatly simplified to
highlight only the most important properties. And only until then,
the goal of topological analysis to present a simple yet powerful
representation of the complex phenomenon can be fully realized.

The rest of this paper is organized as follows: Section 2 reviews
some important facts used in tensor analyses; Section 3 discusses
the relevant previous work in tensor field analyses and visualiza-
tion; Section 4 discuss the methodology we employ to extract the
topological structure of 3D tensor field; Section 5 highlights im-
plementation issues; and Section 6 presents results for both a ran-
domly generated data set and the commonly used benchmark – dou-
ble point load tensor field.

Digital images can be accessed online at:
www.cse.ucsc.edu/research/avis/tensorsep.html.

2 TENSOR ANALYSIS

Tensor fields, especially second order tensor fields, are useful
in many medical, mechanical and physical applications such as:
fluid dynamics, meteorology, molecular dynamics, biology, astro-



physics, mechanics, material science and earth science. Effective
tensor visualization methods can enhance research in a wide va-
riety of fields. However, developing an effective algorithm can be
difficult because of the large amount of information contained in 3D
tensor fields: there are nine independent components in each tensor
and six for a symmetric tensor. Users in many research fields are es-
pecially interested in real symmetric tensors. In some applications,
the data themselves are inherently symmetric. In other cases, sym-
metric tensor data can be obtained through various decomposition
techniques.

In this section, we introduce some important background knowl-
edges in tensor analysis that is related this paper.

2.1 Tensor Transformation

In this paper, we mainly focus on second order symmetric tensors.
However, the transformation rule of tensors can be easily applied
to tensors of arbitrary orders. For example, given a tensor T in the
coordinate system C1 and another coordinate system C2. We know
that the orthogonal transformation between C1 and C2 is R, i.e.,
the relation between the coordinates of a point in these two system
can be written as: X1 = RX2. Then we know that the same tensor
T in C2 can be written as T ∗: T ∗ = RT TR. In its index form
using Einstein’s summation convention, this can be written as:

T ∗
ij = TklRkiRlj (1)

Note that in Einstein’s summation convention, all the redundant
indices on the right hand side will be summed up implicitly. In
this paper, we are not only interested in the transformation of ten-
sors themselves, but also their gradients, since they are important
in analyzing the separating surfaces. Note that the gradient of a
tensor field of rank N can be considered as another tensor field of
rank N + 1. We denote the gradient of a second order tensor field
T (x1, ..., xN ) as a third order tensor field ∇T (x1, ..., xN ),

∇Tijk =
∂Tjk

∂xi

(2)

The transformation rule of this tensor gradient can be also simi-
larly written in its index form:

∇T ∗
ijk = ∇TlmnRliRmjRnk (3)

We use Equation 3 to compute the gradient of tensors in a ro-
tated coordinate. For efficiency considerations, only components
that will be actually used are computed.

2.2 Tensor Projection

The projection of a 3D vector onto the X −Y plane results in a 2D
vector with its third component removed. Similarly, the projection
of a 3D tensor T onto the X − Y plane results in a 2D tensor with
its third column and third row removed. However, if the projection
plane is not perfectly aligned with the axis and its normal is N , then
the projection still results in a 3D tensor T−:

T− = P T TP (4)

P = NNT
(5)

2.3 2D Tensor Topology

Analysis of 2D tensor topology was first proposed by Delmarcelle
et al. [2]. Tricoche et al. [7, 8] then extended this method into
tracking and simplifying time-varying 2D tensor field topology. We
briefly review the main results that are most relevant to our research.
A study of tensor topology is a study of the topology of its eigenvec-
tors. A hyperstreamline is similar to streamline in an eigenvector
field. Like streamlines, hyperstreamlines do not usually cross with
each other. The only places that they do cross are the degenerate
tensors, where at least two of the eigenvalues are the same. First or-
der analysis of the eigenvectors around a 2D degenerate tensor clas-
sifies their patterns into trisectors and wedge points. Wedge points
can be further classified into double wedge points (with two separa-
trices) and single wedge points (with a single separatrix). Figure 1
shows a simple illustration of these basic patterns.

Trisector Double wedge Single wedge

Figure 1: The basic types of first order 2D degenerate tensors.

Note the separatrices are the radial eigenvectors around a degen-
erate tensor. A radial eigenvector is traced from a small offset from
the degenerate tensor and gives the direction of the eigenvectors in
its vicinity. The radial eigenvectors can be computed from the first
order gradient of tensor field at the degenerate tensor by solving a
cubic equation. If the cubic equation has only one real root, it must
be a single wedge; otherwise if it has three real roots, a number δ is
proposed by Delmarcelle et al. to distinguish between trisectors and
double wedges [2]. Note that a radial eigenvector only has an orien-
tation but no direction, since flipping a radial eigenvector results in
another valid one. However, for any particular set of eigenvectors,
only one of the two directions is a valid separatrix. In case of major
eigenvectors, the direction which the radial eigenvector is aligned
with the major eigenvector is the separatrix. Flipping the radial
eigenvector results in the separatrix for the corresponding minor
eigenvectors. But it is perpendicular to the major eigenvector.

The radial eigenvectors divide the space around the degenerate
point into hyperbolic and parabolic regions. It is worth noting that
not all radial eigenvectors are separatrices. For example, in a de-
generate point with a double wedge, there is a radial eigenvector
between the two separatrices, which is not a separatrix because it
resides between two parabolic regions. We refer to it as the hid-
den separatrix. Although it is of little importance in 2D tensor field
analysis, we can show that it is important in understanding 3D ten-
sor topology.

2.4 Transitions Among 2D Degenerate Tensors

Since the degenerate features form curves instead of points in their
most basic configurations, the analysis of 3D tensor topology is
closely related to the study of time-varying 2D tensor topology.
Here, we briefly introduce the continuous transition from one type
of 2D degenerate point into another.

First, there is a misconception that the transition between a tri-
sector and a double wedge point comes about when the two of the
separatrices of a trisector get wider and wider apart until one of
them merge with the other separatrix (conversely, two of the sepa-
ratrices get closer and closer together until they merge together) and



therefore reduced into a double wedge point. However, in our ex-
periments, we show that the persistent transition between a trisector
and a double wedge point is that the flow pattern in the hyperbolic
region becomes sharper and sharper. In the next instant, one of the
separatrix suddenly flips to the other side and turns into the hid-
den separatrix, and the degenerate tensor becomes a double wedge
point.

Second, there is also a misconception that the transition between
a double wedge and a single wedge is that the two separatrices get
closer and closer until they finally merge with each other so they
become a single wedge. But the true transition is that the hidden
separatrix in the double wedge gets closer and closer to one of the
real separatrices. When they touch, they annihilate each other and
both disappear. The degenerate tensor therefore changes into a sin-
gle wedge.

Third, the transition between a trisector and a single wedge point
can happen either through a temporary double wedge or directly. In
a direct transition, two of the separatrices of the trisector get wider
and wider until they are almost 180◦ apart. When they finally form
a line, they annihilate each other and both disappear. The degen-
erate tensor changes into a single wedge. The indirect transition
would happen in two stages as described above.

It is worth noting that even though the data change smoothly, all
the transitions of separatrices happen in a discontinuous manner. In
all the types of transitions, there will be one or two separatrices that
change smoothly during the transition. The other(s) can suddenly
flip the direction, annihilate each other, or both appear at one place
but moving in opposite directions.

3 PREVIOUS WORK

A hyperstreamline is basically a streamline defined over an eigen-
vector field [1]. Typically, the major eigenvector field is used for
integrating the hyperstreamline, while the two other eigenvector
fields provide local information along the length of the major hyper-
streamline and are mapped to its cross section. One of the weakness
of hyperstreamlines is ambiguity in places where the tensors are de-
generate, i.e. where the eigenvalues are nearly equal. In these ar-
eas, a sudden change in direction of the hyperstreamline may arise.
Note that this is a common problem with integration algorithms e.g.
fiber tracking algorithms in DT-MRI. To address this problem, ten-
sorlines were introduced by Weinstein et al. [9]. Ambiguities are
resolved by taking the anisotropy of the local tensor into account
as well as information about orientation of nearby features. This
allows the tensorlines to proceed in a relatively smooth path, even
in the face of isotropic regions or noise in the data set.

Topology based tensor visualization techniques represent the
tensor fields in a simple yet powerful way. The critical features
are extracted to present a simplified version of the underlying data
field. They are defined as degenerate tensors where the eigenval-
ues are identical, and are the only places where the two associated
hyperstreamlines can intersect each other. In 2D tensor fields, there
is only one way to obtain a degenerate point: the two eigenvalues
must be equal. Hesselink and Delmarcelle used this concept in 2D
and discussed the nature of the degenerate points (wedges and tri-
sectors) in great detail.

However, it is more complicated in 3D, in part because there
are two types of degenerate points in 3D: double degenerate points,
where two of the three eigenvalues are equal, and triple, where all
three eigenvalues are identical. Furthermore, the double degener-
ate points may be distinguished by whether the minor and medium
eigenvalues are equal, which we refer to as type-L or linear degener-
ate (these are locations where minor hyperstreamlines can intersect
each other), or the medium and major eigenvalues are equal, which
we refer to as type-P or planar degenerate (these are locations where
major hyperstreamlines can intersect each other). This distinction

is important in some applications. Hesselink’s early work [3] does
not fully explore the properties of the double degenerate features
and instead focuses on the triple degenerate tensors, whose proper-
ties are closer to their counterparts in 2D. They hint that the triple
degenerate points (for the double point load data) are connected by
a locus of double degenerate points [3]. The paper fails to point out
that the dimension of the stable double degenerate features are in
fact lines in most of the typical non-degenerate tensor fields. Hence,
it did not attempt to find a stable numerical method to extract these
feature lines in 3D.

In complex 2D tensor fields, the extracted topology may also be
very complex. Tricoche et al. proposed algorithms to simplify 2D
tensor topology [8] as well as track them in time-varying 2D tensor
fields [7].

Recently, Zheng and Pang [10] established that stable degener-
ate features in 3D symmetric 2nd order tensor fields form lines. A
numerically stable method for extracting these lines was also pre-
sented. First, the discriminant function was reformulated into seven
signed constraint functions which allowed one to check if a cell
face can potentially contain a degenerate point. Next, the degener-
ate points on each candidate cell face were extracted. Finally, these
points were connected using a multi-pass approach to construct the
degenerate feature lines. In [11], an analytical formulation for the
tangents of these degenerate feature lines was derived. This allowed
one to trace the degenerate feature line as soon as one of the degen-
erate points have been extracted. As a result, the more expensive de-
generate point extraction process can be carried out using a coarser
grid, and replaced with a less expensive and more accurate tracing
algorithm.

4 3D TENSOR TOPOLOGY

In this section, we introduce the analysis of 3D tensor topology,
including the degenerate curves and their separating surfaces. We
first start by introducing an important theorem that shows 3D tensor
analysis near a degenerate tensor can be reduced to a similar analy-
sis around a 2D degenerate tensor. Second, we discuss the proper-
ties of the transition point where the reduced 2D degenerate tensors
change its types. We also show that these results lead to interesting
configuration of separating surfaces around a 3D degenerate curve.

4.1 Eigenvectors Around 3D Degenerate Tensors

It was recently established that 3D degenerate tensors form fea-
ture curves. We also know that hyperstreamlines can only cross
each other on points along these degenerate curves. Therefore, a
very important step in 3D tensor topology is to study eigenvectors
around a degenerate tensor. Here we study a more general case of
N × N symmetric tensor field around a degenerate tensor with p
repeated eigenvalues. In this section, we show that the eigenvectors
around a degenerate tensor is equivalent to the eigenvectors of the
tensor projected into its invariant space.

We consider a real symmetric matrix T (t) which is a func-
tion of real parameter t and has the property that two or more
distinct eigenvalues λi(t) coalesce at t = 0: λ̄ = λ1(0) =
λ2(0) = · · · = λp(0). We define the eigenpairs of T (t),
each consisting of an eigenvalue and corresponding eigenvector, as
(λi(t), χi(t)),‖χi‖ = 1 and χT

i χj = 0, i 6= j. T (t) can be con-
sidered as a curve passing through the degenerate point at t = 0.

We assume that the eigenvectors χi(t) → χi(0) when t → 0.
For any t, S(t) = span{χ1(t), ..., χp(t)} is a invariant space
with the associated eigenvalues λ1(t),...,λp(t). S(0) is the invari-
ant space spanned by the eigenvectors associated with the repeated
eigenvalues at t = 0. Note that although each eigenvector is inde-
terminate at t = 0, their spanned invariant space is well defined.
We assume no further degeneracy. In particular, we assume that for



small enough t, mini6=j |λi(t) − λj(t)| ≥ 2δt, where δ > 0 and
is independent of t. In other words, although the associated eigen-
values are getting closer as t → 0, nevertheless the separation is
O(t). This assumption will play an important role in the analysis to
follow. It also clearly points out where such analysis breaks down.

Without loss of generality, we assume the basis for S(0) is sim-
ply Rp, followed by an orthonormal basis for its complement. In
such a basis, T (t) takes the form,

T (t) =

(

M(t) BT (t)
B(t) H(t)

)

(6)

where M , B, and H are the block submatrices of T , and M(t) is
p × p and represents the projection of T (t) onto S(0). Thus, S(0)
is not invariant under T (t), t 6= 0. But as t → 0, B(t) → 0. With
little loss of generality, we assume ‖B(t)‖ < Kt, K > 0 and
independent of t. In the limit, T (0) = M(0)

⊕

H(0), where
⊕

is
the direct sum between two matrices.

In this basis, we may write χi(t) = (yi(t), ξi(t)). By our
assumption, χi(t) → χi(0) ∈ S(0) and thus ξi(t) → 0 as
t → 0, i = 1, ..., p. The projection of T (t) onto S(0) is M(t).
Clearly, yi(t) is the projection of χi(t) onto S(0). We identify
the eigenpairs of M(t) as (µi(t), wi(t)). In other words, wi(t)
is the eigenvector of the projection and yi(t) is the projection of
the eigenvector of T (t) onto S(0). Let 2γ be the separation of λ̄,
the repeated eigenvalue, from the remaining eigenvalues of T (0):
2γ = mini>p |λi − λ̄|. The relationship between wi(t) to yi(t)
can be stated as the following theorem,

Theorem 4.1. For small enough t,

|λi − µi| ≤

(

K2

γ

)

t2 (7)

| sin 6 (yi, wi)| ≤

(

K2

γδ

)

t (8)

The proof of this theorem is provided in Appendix. This theorem
implies that as t → 0, the projection of an eigenvector is equal to
the eigenvector of the projection. For 3D tensor field, this theorem
states that to study the eigenvectors in a small neighborhood around
a degenerate tensor, it is sufficient to study the eigenvectors of their
projection on the repeated plane. Therefore, it is easy to see that
the separating surface in a 3D tensor field is simply the trajectory
of the individual separatrix of each 2D projected tensors around all
points along a degenerate curve. Such an intuition is important in
understanding the behavior of 3D tensor topology

It is worth noting that Equation 4.1 is closely related to the singu-
lar perturbation theory around a pair of degenerate state in quantum
mechanics [4]. It can also be proven using the singular perturbation
theory. In the appendix, we provide a more rigorous version of the
proof.

4.2 3D Transition Points

Equation 4.1 states that the relationship between the eigenvector
around a degenerate tensor can be approximated by the eigenvector
of the projection of the tensor in a small neighborhood if the pro-
jection of T (t), M(t), is not degenerate itself for t 6= 0. Such as-
sumption is valid as long as the repeated plane is not tangent to the
degenerate curve at that point. In fact, using the analytical formula
described in [11] to calculate the degenerate curve tangent, we knew
that from any degenerate point, the degenerate curve tangent, i.e.,
the direction that keeps the tensor degenerate, is also the direction
that keeps the projection of the tensor degenerate. In most cases,

the separating surfaces consist of all the individual 2D separatri-
ces on the repeated plane, emanating from all the points along the
degenerate curve. However, such analysis naturally breaks down
at points where the degenerate curve is tangential to the repeated
plane. In fact, we can show that such points are exactly the points
where the degenerate tensors switch types between trisectors and
wedge points.

Without loss of generality, we still assume the eigenvectors is
aligned with the natural basis of the coordinate system at the degen-
erate point of interest. We denote A(X) = M11(X) − M22(X)
and B(X) = M12(X), where M(X) is the projected tensor field
of T (X) onto the repeated plane. From [11], we know that the tan-
gent of the degenerate curve is equivalent to the direction that keeps
both A and B zeros at the same time, i.e., keeps the projected tensor
degenerate.

N = ∇A ×∇B =





A2B3 − A3B2

A3B1 − A1B3

A1B2 − A2B1



 (9)

where A1 = ∂A/∂x1 and other symbols are defined similarly.
Note that N3 = A1B2 − A2B1 is exactly the symbol δ used by
Delmarcelle et al. in [2] to distinguish between trisectors and wedge
points: if N3 < 0, the degenerate tensor is a trisector; if N3 > 0,
the degenerate tensor is a wedge point. It is natural to see that
N3 = 0 occurs at exactly the points where the degenerate tensor
change between these two types. Since N =< N1, N2, N3 > is
the tangent of the degenerate curve and X−Y plane is the repeated
plane, this is equivalent to the fact that the degenerate curve is tan-
gential to the repeated plane at that point. We refer to such points as
transition points. Another type of transition point is between dou-
ble wedge and single wedge. But since there is no sign change in
N3, there is no special property at such points. The hidden sepa-
ratrix simply merges with one of the two real separatrix and both
disappear.

For example, given a transition point between trisectors and dou-
ble wedge points, the degenerate curve must pass through the re-
peated plane at that point. Through this point, two of the three
separatrix form smooth surfaces, but the other one flips direction.
It can also be shown that the third separatrix must lie on the direc-
tion of the projection of the degenerate curve on the repeated plane.
So on both sides of the transition plane, the separatrices that flips
direction either point to each other or point away from each other.

Figure 2: Schematic showing two ways to transition between trisec-
tors and double wedges. The dash line is the hidden separatrix. The
repeated plane is tangent to the degenerate curve at the transition
point. On the left, the separatrices point to each other before the flip.
On the right, the separatrices point away from each other.

Figure 3 gives the examples of the basic surface configurations
when such transition happens. All the transition points are marked
by white points, and each individual separating surface is labeled
with a different letter. Figure 3(a) is a transition between a trisector
and a single wedge point. Below the transition point, the separa-
trices are single wedges. Above the transition point, they are all
trisectors. Note that surface A is continuous throughout the tran-
sition. Surfaces B and C grow out in opposite directions after the



transition point. All three separatrices at the transition point form
the repeated plane that is tangential to the degenerate curve at that
point. The most interesting property is that surface C starts from
one side of surface A and goes below the degenerate curve. It then
wraps back and merges with surface A from the other side of the
transition point. It can be better seen from other results in Sec-
tion 6. We refer to this type of surface configuration as the helical
shell.

Figure 3(b) is a transition between a trisector and a double wedge
point. The separatrices are trisectors below the transition point and
they are double wedges above it. Surface B is in front of surface C
from the this viewpoint. Surfaces A and C are continuous through-
out this transition. However, the separatrices on surface B switch
direction after the transition. In this example, the flipped separatri-
ces point toward each other. We can see that the separating surface
starting from the trisector side ends up hitting on the same degen-
erate line. The separating surface wraps up with itself! This means
that not only can separatrices interact with other degenerate curves,
but they can also interact with their own degenerate curve.

Figure 3(c) is a similar transition between a trisector and a double
wedge point. However, in this example, the flipped separatrices
point away from each other. This forms an interesting swordfish
surface configuration.

Figure 3(d) shows an transitions between a single and a double
wedge point. Outside the white box, the separatrices all belong to
single wedge points. However, they are all double wedge points in-
side the box. In terms of the separatrices, the hidden separatrix and
another real separatrix suddenly appear at one point, when going
along the degenerate curve. Then the hidden separatrix gradually
moves toward the other real separatrix. When it merges with the
other one, they annihilate each other and both disappear and the de-
generate point reverts back to a single wedge. Although this process
is discontinuous, the separating surface is continuous (although not
smooth) in this case. It is simply a surface folded twice and formed
a “Z” shape configuration along the degenerate curve.

4.3 Other Separating Surfaces

By definition, the separating surfaces divide the space into smaller
regions, within each of which the hyperstreamlines have a simple
pattern. However, the separating surface described above do not
segment the space into closed, distinct regions. If we only consider
the trajectory of the 2D separatrices emanating from all the points
along the degenerate curve, points on opposite sides of a separat-
ing surface might still be connected to each other through other
paths. The reason is that there are still other types of surface that
form separating surfaces. One of them is the surface formed by all
the hyperstreamlines starting between the separatrix at the intersec-
tion of degenerate curve and the boundary. Another example is the
hyperstreamline that is tangential with the boundary. It is impor-
tant that one needs all types of separating surfaces to completely
segment the space into disconnected regions. However, these addi-
tional separating surfaces may add to the visual clutter and prevent
the users from seeing the real topological structure. In this paper,
since we do not know the physical meaning of the boundary, we
ignore these other types of surfaces and only focus on the surfaces
formed by all the 2D separatrices. In the future, the relationship
between other types of separating surfaces and the trajectory of 2D
separatrices should be further investigated to determine the most
useful visualization.

5 IMPLEMENTATION ISSUES

In this section, we discuss several implementation issues in the pro-
cess of obtaining the separating surfaces as described in the previ-
ous sections.

5.1 Obtaining High Resolution Degenerate Curves

Most parts of the degenerate curve extraction algorithm we use is
described in [11]. We choose the method based on discriminant
constraint functions for its stability around higher order degener-
acy. We also use the analytical formula to obtain the tangent of the
degenerate curves to trace high resolution features.

It is worth noting that since the eigenvectors are very sensitive to
small changes at locations near a degenerate tensor, the accuracy of
the separating surface highly depends on the quality of the degen-
erate curves. For each point along the curve, we demand the differ-
ence between the two eigenvalues to be sufficiently small. Since the
separatrix must be a radial eigenvector, it is a good way to verify the
correctness of the algorithm. For any particular set of eigenvectors,
we move a small offset from the degenerate point in the direction
of the separatrix, and check the eigenvector direction. If all the al-
gorithms are correct, that eigenvector should be perfectly aligned
with the separatrix. These two vectors are referred to as verifying
vectors. Any discrepancy of these two vectors is a good indication
of errors.

For all the datasets in this paper, we use a grid for extracting the
feature points on the grid faces that is half the resolution of the orig-
inal grid. Since the extraction algorithm is based on the generalized
Newton-Raphson iterative method, they converge very fast near the
real solution, but there is no guarantee that it can find all the solu-
tions. Then, we use fourth order Runge-Kutta combined with the
analytical tangent to trace and connect the extracted feature points.
When the tracing intersects a cell face, we record the intersection
point and compare it with nearby features. If there is no feature
nearby and the feature is accurate enough, a missing feature that
is lost in the extraction algorithm is recovered through the tracing.
Then the tracing continues to the nearby cells through this newly
discovered feature point. Using this hybrid algorithm of extraction
and tracing, not only do we develop algorithms that guarantees the
correctness of the connectivity, but we also greatly reduce the com-
putational cost in obtaining high resolution feature lines. This is
because tracing is much cheaper than extraction. As long as there
is at least one feature point that is extracted for a degenerate curve,
we can recover the entire degenerate curve. Given the low false
negative rate of the extraction stage, it further reduces the likeli-
hood that a feature line would be lost.

For this paper, we further develop another method to dynami-
cally increase the resolution of feature lines. Given a low resolution
feature line with the correct connectivity, we first simply interpolate
the feature points along the curve. However, the interpolated points
are not strictly degenerate any more. In our experiments, although
they are still very close to the real degeneracy, the two verifying
vectors can sometimes have more than 50◦ difference. Tracing the
separating surfaces from such feature points will result in extremely
low quality results. Therefore, we refine each interpolated feature
point by fixing them on a plane that is most perpendicular to the
analytical tangent. Since the point is very close to the real solu-
tion, the iterative method converges in one or two iterations in most
cases without the need to worry about losing features. This simple
algorithm gives us the power to extract high accuracy degenerate
points with dynamically changing resolution with little extra com-
putational cost.

5.2 Rendering of Separating Surfaces

Although all the separatrices emanating from the degenerate curves
form surfaces, simply rendering the surface is not enough. It is very
important to show both the surfaces and the hyperstreamline curves,
of which they are composed. For this consideration, we choose a
dense array of illuminated hyperstreamlines as our rendering tech-
nique for the separating surfaces. A large number of hyperstream-
lines are computed during the setup stage. During the rendering
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Figure 3: Basic surface configurations at transition points between different types of degenerate points. The separatrices are colored according
to the integration “age” from the degenerate curve and vary from blue to red.

stage, the resolution of the hyperstreamlines can be controlled dy-
namically. A sparse array of illuminated hyperstreamlines helps us
understand the interaction between the hyperstreamlines and other
degenerate curves; a dense array of illuminated hyperstreamlines
gives us better perception of the surfaces without the detail of in-
dividual lines. However, for complicated separating surfaces like
those in the double point load data set, it is not an easy job to un-
derstand all the separating surfaces at the same time. Our current
solution is to give users the flexibility to hide or show each isolated
separating surfaces one by one to avoid visual clutters. In the fu-
ture, we also plan to experiment with other visualization techniques
such as semi-transparent surfaces with texture flow on them.

6 RESULTS

In this section, we apply our technique on several synthetic but
commonly used benchmark datasets: the randomly generated ten-
sor field and the double point load stress tensors. The color map-
ping scheme used in Figures 4 to 7 tries to show the distance of
the hyperstreamlines from the degeneracies. In the randomly gen-
erated dataset, including those in Figure 3, the color represents the
integration distance of the separatrix from the starting point on the
degenerate curve. This color scheme shows how the separatrices
interact with other degeneracies very well. However, it may lead to
different colors even at the same point. Because the separating sur-
faces are often intertwined with each other, especially in the double
point load dataset. So, for Figures 6 and 7, we simply use the differ-
ence between the repeated eigenvalues as the measure of distance.
Note that away from the degenerate curve, the eigenvalues that were
repeated do not have the same values anymore. This scheme gives
blue colors when the hyperstreamline is close, in value, to being
double degenerate.

6.1 Randomly Generated Tensor Field

Here, we used the same datasets as in [11] for comparison reasons.
This dataset is a simple cell with all of its eight corner values ran-
domly generated. Although simple, this type of dataset covers a
lot of topological information. An important advantage with such
datasets is that if we encounter any interesting structure, we can be
fairly confident that this type of structure is persistent, and small
amount of noise will not make it disappear. Therefore, we can ex-
pect to see it often in real dataset and know it is among the basic
configurations.

For example, we know degenerate surfaces and subvolumes are
not persistent features for 3D tensor field, but it is still possible
that we encounter some datasets that have such features, even al-
though their very existence can be dissolved by small amounts of
noise. But if we encounter them too often in a particular physical
phenomenon, such as single point load stress tensors, that means

for that type of physical phenomenon, the six free variables in each
3D tensor are not independent at all. There must be some implicit
constraint that confine the degenerate tensors to form features other
than curves. Therefore, the best solution is to reformulate the spec-
ification of the data and choose the ones that can represent its real
free parameters, and then develop stable numerical algorithm on it.

Figure 4 shows the separating surfaces of the type-P degener-
ate features (where the major hyperstreamlines can intersect each
other) in the randomly generated tensor field. Note that one separat-
ing surface is wrapped around another degenerate curve and shows
its wedge-like behavior. In the lower part of Figure 4(a), we can
see the transition point between trisectors and double wedges, and
the surface wrapping up on its own degenerate curve. In the upper
right part of the same picture, we see the surface folded twice and
therefore shows the transition from single to double back to single
wedge points.

Figure 5 shows the separating surfaces for the type-L degener-
ate features (where the minor hyperstreamlines can intersect each
other) in the same dataset. At the lower right of Figure 5(a) and
lower left of Figure 5(b), we see the “swordfish” shape associated
with the transition point between trisectors and double wedges. The
central line shows a very interesting and sophisticated surface struc-
ture around the transition between trisectors and single wedges. We
can clearly see from both pictures that one of the separating surface
goes around the degenerate curve and wraps around another sepa-
rating surface from the other side.

6.2 Double Point Load Stress Tensors

In this dataset, there are two point loads applied on a semi-infinite
volume. At each location, a tensor that describes the distribution of
stress at that point. It is commonly used as a benchmark dataset to
validate and demonstrate the effectiveness of the visualization tech-
niques. The two yellow arrows mark out the positions of the point
loads and the two purple balls show the triple degenerate points.

Figure 6 shows the separating surfaces for type-L degenerate fea-
tures. Note the interesting patterns formed by hyperstreamlines in
the symmetric vertical plane connecting the two points loads in Fig-
ure 6(a). They first go around the point loads in almost circular
shapes and then pass above the degenerate curve connecting the
two triple degenerate tensors. Note that these separating surfaces
do have a lot of intersections. This property suggests that tech-
niques similar to the saddle connectors in [6] can be used here. Fig-
ure 6(b) only shows the separating surface emanating from the two
bifurcated branch below one of the point loads. Note that the sepa-
ratrices are trisectors on both branches. However, if one zooms out
enough and merges these two branches, we end up with a “node”
structure similar to a “saddle” point in vector topology. This obser-
vation suggests that a good simplification technique should merge
isolated first order degenerate features into higher order features.



(a) Front view (b) Oblique view

Figure 4: Separating surfaces emanating from type-P features lines of a randomly generated tensor field. Surfaces are rendered using dense
arrays of illuminated hyperstreamlines.

(a) Oblique view (b) Oblique view

Figure 5: Separating surfaces emanating from type-L features lines of a randomly generated tensor field. Surfaces are rendered using dense
arrays of illuminated hyperstreamlines.



Figure 7 shows the separating surfaces for the type-P degenerate
features. Figure 7(a) shows all but the loop structure and the line
connecting the two point loads. We don’t show the other two to re-
duce visual clutter. Note that many of these surfaces lie close to the
surface of the semi-infinite volume. It may be related to the tran-
sition between compressive and tensile forces in this region. Inter-
estingly, the two degenerate “tails” from the two triple degenerate
point have a separating surface connecting them. Figure 7(b) shows
the separating surface emanating from the loop structure only. Note
that there are four different transition points on this structure. The
first two are on the lower part of this loop. They are transitions be-
tween trisectors and double wedges. The other two are on the upper
part of this loop where two double wedges merge into single wedge
points.

7 CONCLUSION

This paper provides the theoretical foundation for analyzing and
solving the separating surfaces of second order 3D symmetric ten-
sor fields. These surfaces emanate from degenerate curves and
hence special care must be taken in their calculation. Together, the
separating surface and the degenerate curves define the topological
structure of 3D symmetric tensor fields. Of note is the observa-
tion that the type of double degenerate tensor along a degenerate
curve may switch among the three basic types: trisector, double
wedge, and single wedge. The transition point occurs when the
plane containing the repeated eigenvalue is tangent to the degen-
erate curve. The surfaces in the vicinity of these transition points
are quite complex, but continuous. The continuity of the surfaces
is realized when one takes the hidden separatrix into consideration.
One of the interesting behavior that we noticed is that is possible
for a separating surface to emanate and end on the same degenerate
curve!

To fully understand these topological structures, further study are
needed. For example, to improve the visualization of these struc-
tures, at least two possible avenues are: (i) applying texture pat-
terns on transparent surfaces to show the grain or orientation of the
separatrices on the surface, and (ii) finding a more compact rep-
resentation of the topological structure to reduce the visual clutter
e.g. some variation of saddle connectors come to mind [6]. So far,
we have only looked at randomly generated tensors and the dou-
ble point load stress tensor data sets. Both are rather clean data
sets. Applying topological analysis on noisy data sets may produce
topological structures that are simply too complex to analyze. It
is therefore also important to study filtering or abstraction methods
that identify the important features in the data set.
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A PROOF OF THEOREM 4.1

Before we prove Theorem 4.1, we introduce the gap theorem,

Theorem A.1. (Gap Theorem) Given a real symmetric matrix T ,
any scalar γ, and any vector u, there is an eigenpair of (λi, vi)
such that

|λ − γ| ≤
‖Tu − γu‖

‖u‖
(10)

|sin 6 (u, v)| ≤
‖Tu − γu‖

‖u‖gap(γ)
(11)

where gap(γ) = minλk 6=λ (λk − γ)

A proof of the gap theorem can be found in [5],

Theorem 4.1. For small enough t,

|λi − µi| ≤

(

K2

γ

)

t2 (12)

| sin 6 (yi, wi)| ≤

(

K2

γδ

)

t (13)

Proof. Tχi = λiχi yields the relations:

(M − λiI)yi + BT ξi = 0 (14)

Byi + (H − λiI)ξi = 0 (15)

Eliminate ξi to find,

(M − λiI)yi = BT (H − λiI)−1Byi (16)

‖(M − λiI)yi‖ ≤ ‖(H − λiI)−1‖‖B‖2‖yi‖ (17)

Since 2γ is the separation of λ̄ from the remaining eigenvalues
of T (0). For small enough t,

‖(H − λiI)−1‖
≤ 1/ mini≤p,j>p |λi(t) − λj(t)|
≤ 1/(|λi(0) − λj(0)| − |λi(t) − λi(0)| − |λj(t) − λj(0)|)
≤ 1/γ

(18)

‖(M − λiI)yi‖

‖yi‖
≤

(Kt)2

γ
(19)

Invoke the gap theorem which says that there is an eigenpair
µi, wi of M such that,

|λi − µi| ≤
(Kt)2

γ
=

K2

γ
t2 (20)

| sin 6 (yi, wi)| ≤
(Kt)2

γgap(λi)
(21)

gap(λi) = mink 6=i,k≤p |λi − µk|
≥ |λi − λk| − |µk − λk|
≥ 2δt − (Kt)2/γ
≥ δt

(22)

This leads to the bound on | sin 6 (yi, wi)|,

| sin 6 (yi, wi)| ≤
(Kt)2

γδt
=

K2

γδ
t (23)

These bounds leads to our conclusion that when t → 0, λi → µi

and yi → wi.



(a) Front view (b) Oblique view

Figure 6: Separating surfaces emanating from type-L features lines of the double point load stress tensor field. Surfaces are rendered using
sparse arrays of illuminated hyperstreamlines.

(a) Front view (b) Oblique view

Figure 7: Separating surfaces emanating from type-P features lines of the double point load stress tensor field. Surfaces are rendered using
sparse arrays of illuminated hyperstreamlines.
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