
Realtime Database Support for Environmental Visualization

�

Craig M. Wittenbrink, Eric Rosen, Alex Pang,

Suresh K. Lodha, and Patrick Mantey

Baskin Center for Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064

Abstract

Much research has been done on interfacing databases to visualization applications, and

there are many varied approaches. We describe the visualization{database interface, lessons

learned, design, and design trade-o�s of our development on the REINAS project (Real-time

Environmental Information Network and Analysis System). We have developed visualization

applications that have been in public use for several years and that visualize data from relational

database engines. The most popular of these tools are World Wide Web access tools that have

documented popular success on the Web. In addition we have developed, in collaboration with

environmental scientists, novel visualization tools that also derive their data from relational

database engines{Spray and CSpray. In this paper we present the interface and API issues, as

well as the development of the required middleware. The REINAS system is a sophisticated

data management system whose requirements and construction were driven primarily by the

visualization needs, and therefore presents a unique view of how to utilize commercial relational

database technologies for environmental visualization. The REINAS system uses realtime data

ingest and visualization from remote sensors; multiple heterogeneous and distributed databases;

and �ne grain queries within a spatio-temporal data organization. We also discuss applications

in development, planned future enhancements, and future challenges.

1 Overview

The REINAS{Real{time Environmental Information Network and Analysis system{ is an infor-

mation management system, including a relational database and middleware, intended to marry

data and visualization for environmental science. The project is an O�ce of Naval Research uni-

versity research initiative for bringing environmental science into a more intimate relationship

with state of the art visualization and information technology. Figure 1 shows a high-level view

of the system. Lines indicate physical or wireless network connections. Lines are bi-directional

unless indicated otherwise. Data ows generally from left to right, and feedback and control

generally ow from right to left.

As the most visible part of our project we have numerous applications that interface to

relational database technology. Much of the behind the scenes work has been in developing the

system middleware and database schema [9], but the interface has also held numerous challenges.

We have satis�ed several of the challenges, and face in the near term some additional large

challenges. To demonstrate our contribution, we �rst describe our project, solutions to date,

and the trade-o�s in di�erent interface approaches.

This paper focuses on the interface between the REINAS database component and the

visualization component. In particular, we discuss how the challenges of supporting real{time

�

This project is supported by ONR grant N00014-92-J-1807

1



products/analysis

Data Sources:

Models

Sensors

DBMS Visualization

Figure 1: Major REINAS components.

data ingest and visualization have driven the design and the staged implementation of these

components. The project goals are: our focus on regional real{time environmental science; our

charter for a relocatable system; our requirement to support both real{time and retrospective

data; and our requirement to support three classes of users with various needs: (a) scientists

(meteorologists and oceanographers) who want the exibility of accessing and combining various

data sources for visualization and analyses; (b) operational users (e.g. forecasters) who want

standard products; and (c) instrumentation and remote sensing users who need to validate and

monitor an instrument centric view of the data.

We have three data sources to satisfy our users that work in parallel each with di�erent

tradeo�s, advantages, and disadvantages:

1. A long term data management relational database schema, designed for holding metadata,

and guided by research in visualization.

2. A short term data management relational database schema, designed for minimal setup

time but not attempting to hold metadata important for long term data management.

3. Environmental �les for exchange, stand alone use, and legacy support. We currently

support �le formats speci�c to the project, and some more general formats such as HDF.

Related Work. There are similar systems to REINAS, and there is similar work in com-

bining visualization to databases. We briey review some of the relevant related work. A large

multi-year development project, which focuses on global environmental science is the Sequoia

2000 project [16]. Stonebreaker et al. have also developed custom visualization tools, one which

they call Tioga [17]. Another Sequoia 2000 prototype e�ort, developed interfaces to existing

visualization programs [7]. Gershon et al. [4] overview the fundamental problems in large data

managment and visualization. There are real-time systems that use less sophisticated database

systems [3, 6, 15], and others that run at much less than the seconds timing of REINAS [5, 11].

The work most similar to ours, using a middleware and an API approach to create the interface,

is in the GIS literature [1, 2]. In addition, see [8] for recent research articles in interfacing

visualization to database. Our system is di�erent than the mentioned literature, in that it

does real-time to the second, provides middleware and apis for custom applications, works on a

regional, not global, scale, and provides sophisticated 3D visualization.

This paper is an overview of the successes, approaches, and challenges we have faced in

developing visualization from databases. Using our three data sources listed above we have

developed several primary visualization applications: Xmet, Spray, CSpray, and www-Met. All of

these applications interface to the second source mentioned above. Spray interacts with both

relational database schema approaches and legacy �les. Xmet and www-Met interact with only

the simpler schema, but will be converted to use the full featured schema as it becomes more

fully operational. The interfacing of the applications to the schema has been done primarily

through custom API's supported by middleware crafted to handle environmental data.

2



2 Visualization Applications

2.1 Spray Rendering

We now present brief overviews of our visualization applications in an outside in or top to

bottom description of REINAS. There are four major visualization applications: Spray, CSpray,

Xmet, and World Wide Web Clients. In the following section, we describe the interfaces used

to bring data into these applications.

The visualization component of Spray is organized into three di�erent modes of operation

targeted towards three di�erent classes of users. These are the monitormode for instrumentation

engineers and recreational users to monitor the current state of instruments as well as the

environment; the forecast mode for operational users who are interested in generating standard

forecast products; and the analysis mode for scientists to perform retrospective analysis on their

data. We now look at the each mode in more detail and how each interface with the database.

Monitor Mode

In monitor mode, users have a bird's eye view of the region of interest. See Figure 2.

Environmental sensors are represented by simple icons. By selecting one or more of these sensors

using a point and click interface or through a pulldown menu, users can view interpolated �elds

of a physical parameter (e.g. humidity, wind vector, etc.) or query individual sensors for time

plots of the parameters they measure. The list of sensors currently supported include: �xed and

portable meteorological stations, NOAA buoys, CODARS, wind pro�lers, seal tracks [12], and

ADCP.

Currently, not all the data from these sensors are coming o� the database. For example,

some of them have to be retrieved from the sensor logs once every hour and stored in a local �le.

On the other hand, realtime data from Met stations are available through the Met server and

can be used to interpolate the environmental �eld or generate time plots as the data arrives.

The seal tracks and the mobile land and water based Met platforms are also of interest as GPS

readings provide their current locations and can be used to aid the visual display.

Figure 2: View of the Monterey Bay showing location of some sensors and an interpolated wind

�eld from a subset of these sensors.

Forecast Mode

Operational forecasters are interested in generating standard products from forecast models

and satellite observations. These products may include animated GOES satellite images, as

well as maps that show contours of 500mb pressure �eld at 60m spacing of geopotential height

against vorticity, 850mb pressure �eld at 30m spacing of geopotential height against relative

3



humidity (shaded above 90%), and others. Aside from standard products, users can also generate

customized products e.g. di�erent projections, di�erent contour spacing, and heights. One can

also register and overlay observation data with products e.g. wind barbs and animated GOES

images. Figure 3 shows a typical forecast product.

Currently, satellite images are periodically and automatically retrieved via the Naval Post-

graduate School. The images are stored locally in �les and will be stored as blobs in the

database.

Figure 3: Sample standard forecast product where regions of relative humidity above 90% are

cross-hatched.

Analysis Mode

This mode allows the scienti�c users to perform retrospective analysis on synoptic data.

It allows users to explore large data sets interactively using di�erent visualization techniques.

It is also extensible and can easily grow with users' needs. The underlying mechanism that

provides the visualization capability in analysis mode is based on spray rendering [13]. Spray

rendering provides the users with the metaphor of spray painting their data sets as a means of

visualizing them. In its simplest form, data are painted or rendered visible by the color of the

paint particles. By using di�erent types of paint particles, data can be visualized in di�erent

ways. The key component of spray rendering is how the paint particles are de�ned. They are

essentially smart particles (or sparts) which are sent into the data space to seek out features of

interest and highlight them. Among the advantages of this visualization framework are: grid

independence (sparts operate in a local subset of the data space and do not care whether data

is regularly or irregularly gridded), ability to handle large data sets (sparts can be \large" and

provide a lower resolution view of the data set or they can be \small" and provide a detailed

view of an area of interest), extensible (it is easy to design new sparts). Sparts can also travel

through time-dependent data sets. Figure 4 shows the interfaces available in analysis mode as

well as illustrates some of the possible visualization methods.

Spray is an evolving research system. Currently, it works with rectilinear grids only. Entire

data sets are read in from �les and do not take advantage of the particle nature of the sparts. We

envision that once the data is ingested into the database, the sparts can make the equivalent of

SQL calls to travel through the data space by requesting for the appropriate subset of the data

from the database. Some caching and coherency measures need to be taken to ensure that the

current database technology does not get bogged down with too many small requests. Finally,

4



one can also exploit the inherent parallelism in the independence among sparts to operate on

local subsets of the data.

Figure 4: Sample visualization in analysis mode using spray rendering.

2.2 Collaborative Spray

To facilitate the sharing of data and collaboration among science colleagues, we have also added

a collaborative feature to the REINAS visualization system, enabling geographically distributed

researchers to work within a shared virtual workspace and create visualization products [14].

There are several components that are needed to make this feasible: session manager, shar-

ing data/cans, oor control, multiple window, audio/video support, and di�erent collabora-

tion/compression levels. Figure 5 shows some of these.

Users can collaborate at di�erent levels. Sharing can occur at the image (visualization

product), spray can (abstract visualization objects { AVOs), or data stream (raw data) level.

At the image level, participants can see what the other participants see and may perhaps be

able to change view points. At the can level, participants have access to a list of public spray

cans put up by other participants. These public cans will generate AVOs from the remote hosts

and distribute them to other participants. Users may also give permission to other participants

to have direct access to data streams and replicate those on local machines for faster response

times. The di�erent levels of collaboration also imply di�erent requirements for compression.

Tradeo�s will have to be made between graphics workstation capabilities, network bandwidth

and compression levels. Objects that need to be transmitted can either be images, AVOs

(together with can parameters and other transformation matrices), or raw data.

This is an excellent opportunity where database technology can help the visualization. With

a collaborative system, the data does not have to reside in one central database. In fact, the

data could be distributed around several heterogeneous databases. The visualization application

acts as a common front end for the users to query and visualize their data. Where the data

actually resides can be made transparent to them. The current CSpray program performs this

task by allowing you to visualize another participant's data. Because the requests are sent to

the participant with the data, remote database queries can be made by all of the participants

without sharing the data. The visualization products are shared, because each participant acts

as a visualization server for everyone else.

5



Figure 5: Collaborative visualization. The large graphics window shows the viewpoint of the local

user. The smaller window shows what the collaborator is looking at. The \eye-con" shows the

location of the other participant.

2.3 Xmet

Xmet was initially designed to be a system debugging tool that included some primitive visualiza-

tion capability. However, along with the Xmet API server, and related software that populates

a simple database, Xmet became the prototypical REINAS client application.

As a network application, Xmet was designed using the client-server model. Multiple instan-

tiations of the Xmet client interact with a single \XmetServer". Although facilities exist for

running multiple servers should performance degrade, this has rarely proven necessary. Com-

munication between client and server is abstracted using the Xmet API (discussed later) and

accomplished using Internet socket streams.

As a visualization application, Xmet was designed with very modest goals in mind, namely

the display of concurrent time-series data. It was later expanded to also allow the display

of two-dimensional CODAR ocean surface current radial and vector data, including CODAR

animations. Figure 6 shows a screen shot from a typical Xmet session. The map window in the

upper-left shows the Monterey Bay coastline and surrounding region, with glyphs indicating the

position of real-time meteorological stations whose data is available through the server. The

current site is emphasized, indicating that conditions from the Long Marine Lab meteorological

station are being displayed. Below the map, current conditions for various sensors are given; to

the right, graphs of sensor stream values over the previous twelve hours show how temperature,

wind, and solar irradiance vary from mid-morning to early evening. Individual pop-up menus

allow the strip-chart graphs to be user con�gured. Additional controls at the bottom allow the

user to navigate through time, display wind-barb glyphs, �x the strip-chart display interval, and

control the frequency at which the displayed current conditions and strip-charts are updated.

In alternate modes, the user may decide to con�gure Xmet with zero strip-charts and zoom in

on the view of Monterey Bay as shown in Figure 7. In this case, CODAR ocean surface current

radial data is under investigation, with meteorological conditions from the various stations

overlayed using wind-barb glyphs.

From a visualization standpoint, Xmet lags far behind the modern, GL-based Spray and

CSpray; however, its compactness, portability, and relative ease of use have made it fairly

popular among REINAS users. Binaries for Sun/4, DEC ULTRIX, RS/6000, HP/UX, SGI,

A/UX, and BSD/OS platforms have been built and continue to be widely distributed.

6



Figure 6: Xmet: The Prototypical REINAS Client Application

Figure 7: Xmet: Con�gured for CODAR Radial Data Display

7



2.4 World Wide Web Clients

The growing popularity of the World Wide Web (WWW), and our desire to provide real-time

demonstrations to users who were not previously aware of REINAS, led to the development

of HTML aware applications, which when used in conjunction with the National Center for

Supercomputing Application's httpd server, provide a WWW interface to the Xmet API.

The www-Met application is integrated into a virtual tour of the Monterey Bay region, high-

lighting sites where the project has deployed or connected instrumentation (interested readers

are invited to visit http://sapphire.cse.ucsc.edu/reinas-instrument-tour/. Web visitors

are �rst presented with a map of the region (Figure 8) allowing them to select a site to visit.

Figure 8: www-Met: Opening Screen

Pages describing each site, and the instrumentation accessible through REINAS at that site,

can be reached in this way. Where meteorological instrumentation is present, users can choose

to query for current and recent weather conditions; Figure 10 shows a sample query with its

results.

Although far more primitive than either Xmet or the Spray and CSpray applications detailed

previously, the instrument site web tour currently receives approximately 4800 interactions

generating over 1500 separate requests for data from the database in a given month. Despite its

simple interface and relatively primitive visualization options, www-Met's usage statistics dwarf

that of Xmet and Spray.

A similar web oriented application is www-CODAR, which displays a real-time ocean surface

current vector map, via the Xmet API (see Figure 11). www-CODAR received over 570 visitors in

June, 1995, the �rst full month it was publicly accessible. Each vector map typically requires

about 400 database queries to produce under the Xmet API; hence, these 570 visitors symbolize

over a quarter-million Xmet API transactions alone.

8



Figure 9: www-Met: A Sample Query Form Figure 10: A Sample Query Result

Figure 11: Ocean Surface Currents on the World Wide Web

9



3 Application Programming Interfaces

The primary interface of our distributed applications to the database engines and to �les is

through several application programming interfaces (APIs). There are three primary APIs now

in use. The XmetAPI currently provides a generic interface to the simpler schema; the RSObject

(for R(EINA)S) API provides an interface to the full featured schema at a higher level; and the

REINAS low level API provides a mechanism to simply passes SQL queries directly to the

database engine, as well as handling ferrying data back and forth. The RSObject API is written

on top of the REINAS low level API, and also has facilities to access data from the Xmet server

using the Xmet API, and to �les accessing them directly. In this section we quickly describe

them, and the issues and design trade-o�s that were used.

3.1 Xmet API

The Xmet API is opcode based, with most opcodes occurring in request/reply pairs. A list

of Xmet opcodes is given in Figure 12. All Xmet API requests conform to a standard type,

request reply function

mo-getinit mo-retinit initialization (meteorological)

mo-getinfo mo-retinfo return site metadata

mo-getcurrent mo-retcurrent most current meteorological data

mo-getall mo-retall arbitrary meteorlogical data

mo-getavg-all mo-retavg-all arbitrary meteorlogical means

mo-getmax-all mo-retmax-all arbitrary meteorlogical maximums

mo-getmin-all mo-retmin-all arbitrary meteorlogical minimums

mo-getseries mo-retseries arbitrary meteorlogical timeseries

co-getinit co-retinit initialization (CODAR)

co-getinfo co-retinfo return CODAR site metadata

co-getradials co-retradials return arbitrary CODAR radials

co-getvector co-retvector return arbitrary CODAR vector

so-getrecent so-retrecent return server usage statistics

none so-retdie inform client of server's demise

Figure 12: Xmet API Opcodes

detailed in Figure 13; the opcode and parameter values determine the precise meaning of the

request. Replies are similarly formatted in a standard type, detailed in Figure 14. For example,

typedef struct {

long opcode; /* request opcode */

long iop1, /* integer operands (32-bit) */

iop2,

iop3;

TimeType dop1, /* time operands */

dop2;

} XmetRequestType;

Figure 13: Xmet API Request Structure

to request the most current weather conditions from meteorlogical site #2, a request structure

with the opcode �eld set to mo-getcurrent and iop1 set to 2 is forwarded to the server through

a library routine. The server replies with a reply structure identi�ed containing a mo-retcurrent

opcode and iop1 set to 2. The weather conditions are encoded in the data �eld, with extracted

10



typedef struct {

long opcode; /* reply opcode */

long iop1, /* integer operands */

iop2;

long mask1, /* logical operands */

mask2;

TimeType tstamp; /* time operand */

long *data; /* variable length opcode specific data */

} XmetReplyType;

Figure 14: Xmet API Reply Structure

with other library calls. The tstamp �eld identi�es the time for which the data is valid. The

remaining �elds are unused in this transaction.

Although admittedly primitive, this simple API has demonstrated remarkable utility, and

has been used by such diverse applications as high-end visualization systems such as Spray and

CSpray, various X/Motif toolkit applications, world-wide-web server glue code, and simple text-

oriented client programs, on a variety of architectures. Functionality can and has been extended

simply by de�ning new opcodes and updating the server (most of the queries and all CODAR

support was added in this way). Inline compression, handled by the library routines which send

and receive requests and replies, addresses basic concerns about network transport e�ciency.

Although the application programmer is limited in the types of requests that can be made

to the server when using this API, the ease with which common requests can be made has

helped make this interface the most popular (in terms of number of applications developed and

transactions handled) among REINAS project client applications to date.

3.2 RSObject API

The RSObject API was designed for the handling of environmental data. In the design of this

API, there were goals in object oriented design of the entire API and to satisfy several goals

fundamental to language design. The design issues are numerous and involve tradeo�s in 1)

type checking, 2) security principle 3) e�ciency 3) maintainability 4) readability 5) exibility

[10]. Others have delved into object oriented API designs such as Bernath [1], Berril [2], and

those in [8].

In designing the RSObject API we considered numerous alternatives, and settled upon one

which was best in terms of the metrics given. The RSObject API uses separate types, but passes

objects around using pointers for e�ciency and generic calls. We do dynamic type checking on

the object type. What follows is a list of the metrics that we used to evaluate various API

choices:

1. Type checking: compile(static) No

2. Type checking: runtime (dynamic) Yes

3. developing supporting: easy, fewer routines to support

4. e�ciency: must do run-time checks

5. API use: simple to understand, simple to use

6. multiple get's use multiple typed variables, and checking will be done for you RSGet(. . . temp, ) RSGet(

. . uncertainty . . )

7. Abstraction: Yes. abstraction in de�nition and implementation

8. Automation: Yes

9. Defense in Depth: Yes (mostly)

10. Information Hiding: Yes. Only the known scienti�c types are visible. enumeration constants are hidden.

11. Labeling: NA

12. Localized Cost: No, dynamic object checking is cost for all accesses

11



13. Manifest Interface: Yes

14. Orthogonality: Yes

15. Portability: Yes

16. Preservation of Information: Yes

17. Security: Yes

18. Simplicity: Yes (and No harder to implement)

19. Structure: yes

20. Syntactic Consistency: Yes

21. Zero-One-In�nity: NA

The API we designed yields a score of 15 versus 8 and 13 for two other likely alterna-

tives, where each feature is given one point. This proposed solution uses separate types,

passes objects using pointers to amortize method cost, allows dynamic type checking

more in line with an object oriented programming style, and allows extension to use X

resource type constants. Here is an example query of the API:

status = RSGet(object, objectType, &returnObject)

The object which is to be queried has multiple settings, such as locality, time, and

other quali�ers, which can be set on the object such as RSSet() calls. This provides for

arbitrary manipulation of the object's characteristics as well as the ability to enhance

objects, not use visible constants (magic numbers), and do dynamic default behavior of

objects upon creation. The type of data to be queried is a variable found in the return

type itself. The objects may be queried often with queries that don't change the object

itself, simply the return values.

We also use a multiple class hierarchy using C type de�nition design. Some objects

can be creat'ed while other base class objects are static declarable, providing a reason-

able mix for e�ciency ease of use and type checking. As examples, there are types,

elements, and aggregations. Environmental parameter units are speci�ed as part of the

container in which they are retrieved from. The �eld descriptor gives the actual units.

Units are described within the RSField descriptor. If a user wishes to change the units,

an RSSet operation is performed, and the corresponding �eld will reect the change.

For example, for a fully generic temperature object, the �lled in values may be the

result of the query, or may have been set by the user, so they are more like commands.

The return values from the data base engine are in character format. The REINAS

low level API passes these and the internals of the RSObjects convert these to binary

(int, oat, double), and then populate the structures that are visible to the user program.

The major class type is statically de�ned, such as RSParameter, and then the minor

class is dynamically by the result of the query. The programmer must have knowledge

of the basic scienti�c types. They must be aware of how to manipulate and operate on

those types. An example struct follows:

typedef struct rsparameter{

int type;

float latitude;

float longitude;

float z;

float time;

float fval;

}RSParameter;

12



The application programmer uses the parameter, description lists, series, and locali-

ties, to manipulate and interact with both the real time vacuum, accessing data before

they are loaded, and the data base. Localities de�ne the bouding box in space and/or

time that allows culling of the environmental queries. The descriptor list is an array of

RSField's that are used to encode the data types. Numerous methods are supported

and objects, such as getting one measurement, getting an entire time series, and getting

a large �eld of scattered data. We have also developed some convenience functions for

object duplication, and querying the size of data that can come back.

4 Underlying Issues

The applications and APIs simply show our results to date. We now discuss several

underlying issues that are important in the development of the REINAS system.

4.1 Granularity of Data Access

The underlying issues in interfacing the visualization programs really lie with their

intended usage. With Spray visualization we have been able, and were required, to

experiment with the granularity of requests made to the database. Because of the

particle nature of Spray, each spart operates independently on its local data subset.

Two immediate consequences are that the size of the local space may be varied, and

that each local subset, whether overlapping with another region or not, can be operated

on independently. These two are important considerations if sparts are to separately

make queries to the database. If the granularity is set too �ne, the overhead of setting up

the calls will overwhelm the database server. On the other extreme, if the granularity is

too coarse, the advantages of working on small blocks of data are lost. At any rate, some

caching and coherency measures need to be taken to ensure that the current database

technology does not get bogged down with too many small requests. In general, sparts

travel in more or less the same direction, hence spatial and temporal coherency is high.

However, optimistic caching of anticipated trajectories may not always be practical.

Take for instance the case of sparts that trace out ribbons in ow �elds. If the ow

is highly divergent or turbulent, the sparts may request widely di�erent regions of the

data space to integrate its next position. Similarly, some preprocessing of the data

may be necessary to help optimize database queries. For instance, when dealing with or

querying scattered data sets, it may make sense to bin the data into di�erent sub-regions

or arrange them in a hierarchical structure.

Even when optimizing for simplicity, as was done with the simple Xmet API, ques-

tions about the appropriate level of granularity arose. In particular, the best way to

formulate the result of a request for ocean surface current vectors was not immediately

obvious. The di�culty stems from the nature of the data, and not the characteristics

of the visualization; in this case, a snapshot of the ocean surface current includes an

arbitrary and varying number of vectors. A reply might group all possible vectors to-

gether, a convenient but ine�cient approach in this case. Or, a formulation requiring

each vector to be returned independently adopted, a more exible but also ine�cient

approach (in terms of number of transactions). The later approach was adopted, and

appears to be working well.

13



4.2 Support for Multicasting

The current implementation of CSpray uses point to point TCP/IP connections to

support collaboration between users. While providing reliable communication links,

it severely limits the number of active participants because of the O(N

2

) connections

necessary to provide a shared common workspace for N participants. An alternative

that we are looking at is reliable multicast where there are only O(N) connections in

a session. This signi�cantly reduces network tra�c especially when participants are

making liberal use of their spray dosage (i.e. transferring large amounts of graphics

primitives). This is also a more e�cient setup in situations where one participant is

brie�ng (broadcasting) to the entire group as data is routed among the participants as

opposed to individually sending to each one.

Multicasting would also be useful in the simpler world of the Xmet API. Typically,

several clients are active simultaneously, and many are simply con�gured to monitor

current meteorological conditions at a common site. Currently, each client must in-

dependently request such data from the server, even though the server might receive

several identical requests almost simultaneously. Multicasting the identical reply would

both reduce network tra�c and reduce the number of database interactions as well.

4.3 Simple, Safe Code

Nowhere are the advantages of a simple, compact, well-understood API versus a sophis-

ticated, more powerful, and better tuned approach more obvious than comparing the

ease of extensibility, in practice, of the Xmet API with the other interfaces developed

in REINAS. Although the Xmet API was developed �rst, with a fairly primitive under-

standing of the types of queries that would be useful, the interface quickly outgrew its

prototype classi�cation and took on a large share of the responsibility of transferring

data from the database to a variety of REINAS visualization client applications. This

occurred because of the ease of use and speed at which the API could be extended

when new environmental data or new types of queries were introduced. The Xmet API

is simple enough for fast maintenance, and many changes may be made in hours or

days. The Xmet API is also simple enough that it can be quickly understood, and

application transactions require only a few lines of code. As a result, it is used by a

variety of REINAS client programs.

In addition, the Xmet API could be and was extended without a�ecting (usually)

the functionality of previously written clients. Functionality was extended by adding

opcodes; the request and reply structures were never changed. As a result, clients

only needed to be updated if they speci�cally needed to take advantage of the queries

available through the new opcodes. This has often not been possible with the RSObjects

API, as it was written on top of Xmet, the REINAS low level API, and as an interface

directly to �les. Although the Xmet API limits the type of queries that can be made

to the enumerated commands, it is extensible enough that, in practice, this is not a

signi�cant drawback. The command approach does break clients, when the enumeration

of command types, or the result ags must be or are inadvertantly modi�ed, but errors

were quickly tracked down.

The REINAS low level API, and RSObjects API, are more powerful, and require

more e�ort to understand as they include sophisticated features like SQL support,

blocking and nonblocking reads, multiple handles, and must support the full featured

14



schema that has hundreds more data types. There of course, remains much work for

improving query performance that is not completely the responsibility of the database.

For example, some Xmet queries result in a large number of transactions between client

and server. In this phase of the project, these performance issues have not become

too important, even with hundreds of users a week. Often, disk space has become a

more considerable problem for project management, and application support. Currently,

older data are archived o�-line in anticipation of using a tertiary storage solution. These

API trade-o�s show how di�erent small and large software projects are in terms of their

extensibility and development cycles. The di�culties in developing a large software

system have not dissappeared, but in attempting to solve a large part of the data

management problem we have at least used an incremental approach and completed

the prototype of a much more sophisticated system. We hope to soon complete newer

visualization applications which fully exploit the RSObject API and the features of the

REINAS System.

4.4 User Interface

The separation of of functionality into three modes to meet the needs of the three user

classes seem to place an obstacle after extended use. Users seem to switch from one

mode to another mode because the functionality was not directly available under that

mode. Another drawback to that organization was that not all the data were available in

each mode. For example, monitor mode had access to sensor measured data but not to

model data as in analysis mode. This proved to be weakness for users who are interested

in comparing the numerical forecast versus the actual measurements. We have since

redesigned the interface to take these limitations into account. The current, ongoing

visualization development e�ort is now tool based instead of mode based. That is, users

will activate one or more tools to do data transformations and/or visualizations. Each

tool have a set of input ports that can be associated with di�erent data streams either

from �les or from the database. Output from each tool can be routed to a graphics

window for rendering, or back to the database or �le for saving. Tools accomplish the

functionality provided previously in the di�erent modes e.g. �eld interpolation, contour

lines, isosurfaces, etc. They are actually made up of simpler elements that work on a

chunk of data at a time, the results of which are passed to other elements within the

tool. That is, requests are continually made to retrieve a subset of the data for the tool

to work on. Within the tool, elements process the data in a dataow fashion, and may

also send feedback to request neighboring data. In this fashion, we have married the

dataow approach with the active agent approach. The underlying execution model is

transparent to the user as they are simply interacting with di�erent tools.

5 Challenges and Lessons Learned

In the environmental sciences it has been traditional to place environmental data into

proprietary �le formats. The visualizations made from these formats have been custom

developed, but the di�culty in using other researcher's data has been not only the con-

version of the formats, but the understanding of the lineage of the data. The REINAS

project has been focused on trying to aid in the development and experimentation of

systems that would solve the long term data management problem. While this is a

15



fundamental di�culty, it is not the only aspect of our research. We have also looked in

depth into the marriage of our visualization applications to this experimental informa-

tion system. In so doing, we have developed a range of solutions that have interesting

trade-o�s.

By simply using a relational database, and putting the environmental data into

tables, we were able to provide a large jump in functionality over using �les alone. A

centralized server accessing the database, and handling distributed network requests

through a primitive but extensible API has been very successful in serving a wide range

of visualization applications. The Xmet, www-Met, www-codar, and Spray applications

demonstrate the succesful integration of a relatively simple schema (less than 500 lines

of SQL), with a server, and a network client/server-based API. In addition, new sources

and queries can be added to the system fairly quickly because of the overall simplicity

of the system. But, despite its success, this system does not solve the long term data

management problem.

A schema designed primarily by our collaborator, Bruce Gritton, of MBARI holds

promise for helping to solve the long term data management problem. The added cost

for capturing and using the additional meta-data, and relations among the data, is the

complexity. The current schema is over 7000 lines of SQL. To maintain, insert, and

verify instrument data that is loaded requires a full time database administrator. There

has been a considerable amount of work put into simplifying the process of adding new

instruments, but it still requires about the complexity of developing and debugging a

Unix device driver. To capitalize on the features available in this full featured schema, we

have developed a pass through low level API, and a higher level object oriented API for

environmental data. This allows the in memory representation to match the database,

while not forcing the application programmer to use SQL directly. Our research goals

were to have Spray rendering use smart particles to drive the queries, but the level of

support by the database and the Unix OS for networked programming are such that

this was impractical. We have therefore implemented a blocking query approach that

may be improved to use a caching scheme for e�ective performance. The visualizations

that may be done are similar to those done with �les, but there is larger exibility in

developing time series visualizations, and in selecting and deselecting sources.

Our near-future research involves the enhancement of the information system to

hold more data, such as AVHRR, Ocean Models, etc. and to do a closer integration of

measurement and model data. This is where our science users are driving us as they

need to compare the e�ectiveness of their models in capturing real world phenomena.

They may also use the visualization to experiment with di�erent ways to interpolate the

measurement data, which is necessary to kick-start the models. Further into the future

are the video applications on which experimentation is just beginning, both from the

technology side and from the science side. It may be that relational database technology

will not support the multimedia performance necessary for a video database, and the

numerous vendor extensions do not clearly solve these either. In the end we can only

hope to develop the appropriate interface so that our visualization applications become

wired to the latest valid scienti�c data sources, while still supporting the legacy sources.

16



Acknowledgments

We would like to acknowledge the e�orts of some of the students who have been active in

REINAS, including: Bruce Montague, Carles Pi-Sunyer, Bryan Mealy, David Kulp, Skip

Macy, Tom Goodman, and Jim Spring. We would also like to thank the many colleagues

involved in this collaborative e�ort, especially our science colleagues Professor Wendell

Nuss, Bruce Gritton, Kang Tao, Dr. Francesco Chavez, Dr. Dan Fernandez, and

Professor Je� Paduan. The REINAS systems group has been instrumental in providing

the foundation from which to develop a real application test bed { led by Professor

Darrell Long and Chair Pat Mantey and supported by Andrew Muir. The REINAS

visualization team, Tom Goodman, Naim Alper, Jonathan Gibbs, Je� Furman, Elijah

Saxon, and Michael Clifton, have provided much of the coding, and development for the

Spray and CSpray applications. In addition, John Wiederhold, Catherine Tornabene,

and Ted Dunn helped develop the network of Monterey Bay area instrumentation that

attracts most of our users.

References

[1] T. Bernath. Distributed GIS visualization system. In GIS/LIS Proceedings, Vol.

1, pages 51{58. American Society for Photogrammetry and Remote Sensing, Nov.

1992.

[2] A. Berrill and G. Moon. An object oriented approach to an integrated GIS sys-

tem. In Proceedings of GIS/LIS, pages 59{63, San Jose, CA, Nov. 1992. American

Society for Photogrammetry and Remote Sensing.

[3] R. S. Cerveny et al. Development of a real-time interactive storm-monitoring

program in Phonenix, Arizona. Bulletin of the American Meteorological Society,

73(6):773{779, June 1992.

[4] N. D. Gershon and C. G. Miller. Dealing with the data deluge. Special report:

Environment, part 2. IEEE Spectrum, 30(7):28{32, July 1993.

[5] S. Howes. Use of satellite and radar images in operational precipitation nowcasting.

Journal of the British Interplanetary Society, 41(10):455{460, Oct. 1988.

[6] J. Intriery, C. Little, W. Shaw, R. Banta, P. Durkee, and R. Hardesty. The land/sea

breeze experiment (LASBEX). Bulletin of the American Meteorological Society,

71(5):656, May 1990.

[7] P. Kochevar et al. Bridging the gap between visualization and data management:

A simple visualization management system. In Proceedings of Visualization 93,

pages 94{101, San Jose, CA, Oct. 1993. IEEE.

[8] J. P. Lee and G. G. Grinstein, editors. Database Issues for Data Visualization,

IEEE Visualization '93 Workshop. Springer{Verlag, 1994.

[9] D. Long, P. Mantey, C. M. Wittenbrink, T. Haining, and B. Montague. REINAS

the real-time environmental information network and analysis system. In Proceed-

ings of COMPCON, pages 482{487, San Francisco, CA, Mar. 1995. IEEE.

[10] B. J. MacLennan. Principles of Programming Languages: Design, Evaluation, and

Implementation. Holt, Rinehart, and Winston, New York, second edition, 1987.

17



[11] M. Milnes. Interpretation of remotely sensed images using historic data. Journal

of the British Interplanetary Society, 41(10):451{454, Oct. 1988.

[12] G. W. Oliver. Visualizing the tracking and diving behavior of marine mammals.

In Proc. Visualization, page in press, Atlanta, GA, Oct. 1995. IEEE.

[13] A. Pang. Spray rendering. IEEE Computer Graphics and Applications, 14(5):57 {

63, 1994.

[14] A. Pang, C. M. Wittenbrink, and T. Goodman. CSpray: A collaborative scienti�c

visualization application. In Proceedings SPIE IS &T's Conference Proceedings on

Electronic Imaging: Multimedia Computing and Networking, volume 2417, pages

317{326, Feb. 1995.

[15] D. Schwab and K. Bedford. Initial implementation of the great lakes forecasting

system: A real-time system for predicting lake circulation and thermal structure.

Water Poll. Res. J., 29(2/3):203{220, 1994.

[16] M. Stonebraker. Sequoia 2000: A reection on the �rst three years. IEEE Com-

putational Science and Engineering, 1(4):63{72, Winter 1994.

[17] M. Stonebraker et al. Tioga: A database-oriented visualization tool. In Proceedings

of Visualization 93, pages 86{93, San Jose, CA, Oct. 1993. IEEE.

18


