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abstrat

This paper introdues a new relatively inexpensive tehnique { Stream bubbles for 3D ow

visualization. The physial analogy to this tehnique are bubbles (air, arbon-dioxide, oil,

et.) that an be observed in nature with interesting shapes and varying speeds. A stream

bubble is represented by NURBS with only 8 ontrol verties, although other representations

are also possible. Its internal shape hanges over time and shows twisting and strething,

as well as expansion and ontration along the ow. Upon enountering an obstale, it

will automatially erode and/or split in an intuitively simple geometri way. For highly

divergent and vortial �elds, stream bubbles an also break apart based on the aspet

ratio of the bounding volume. When two or more stream bubbles meet, no expliit merge

operation is needed sine the surfaes will simply interset eah other to form a omposite

surfae. Bubbles may be of di�erent sizes. Large bubbles give a oarse global view of

the ow struture, while smaller bubbles give a more aurate depition of the loal ow

struture. In addition, our interfae provides a good view of the ow struture by allowing

users to interatively move and resize di�erent stream bubbles together with an animated

or step-by-step playbak faility.

Keywords: Vetor �eld, NURBS, streamline, advetion, splitting, expansion, ontration.
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1 INTRODUCTION

In physial measurements suh as those from wind tunnel experiments, foreign materials suh as

smoke, oil, or dye are routinely introdued into the environment to better observe the ow patterns

[13℄. However, these experiments tend to be expensive; ontrol of environment and reproduibility of

results are also issues to onsider [10, 13℄. On the other hand, omputational uid dynamis (CFD)

simulations oupled with ow visualization tehniques is gaining aeptane as a valid method for

sienti� investigation [11℄.

Flow visualization methods may either be spae �lling (e.g. line integral onvolution (LIC) [4℄,

spot noise [14℄), or a relatively sparse sampling of the ow �eld. Among the tehniques in the latter

ategory are: streamlines, stream ribbons (or stream surfae), stream tubes, et. The tehnique

presented in this paper, extends the hoie in this ategory, but with the potential for being volume

�lling as well. Here are some de�nitions:

� A streamline is the path of a massless partile from an initial seed position within a 3D ow

�eld. Every point along the streamline has the veloity �eld tangent to it.

� A stream ribbon is the path swept by a deformable line segment through a 3D ow �eld. For

a set of disretized seeds (oming out of a rake), a stream surfae an be built by tiling a series

of adjaent streamlines with polygons.

� A stream tube is de�ned as the surfae swept out by a losed polygon along a streamline. A

stream polygon shows an instane in \time" as a losed polygon is being swept out along a

streamline.

� A ow volume is de�ned as the spae swept out by a subvolume (e.g. tetrahedra). A stream

bubble shows an instane in \time" as a subvolume is being swept out. It is de�ned as a losed

surfae along the path swept out by a set of seed points initially de�ning a subvolume of the

3D ow, and shows the evolution of that subvolume as it goes through the 3D ow.

While streamlines may reveal the magnitude and ow patterns, stream ribbons show twisting

motion along the loal ow �eld. In addition to these, stream tubes also show loal deformations

due to normal and shear strains. Beause stream bubbles trak the shape hanges in a loal volume

of spae, this tehnique an also show loal ompression or expansion of the ow �eld. With texture

mapping, loal rotation and strething an be easily observed as well. Computationally, it is also

less expensive than volume traking method like stream balls [2℄. These di�erent tehniques are

reviewed in the next setion.

1.1 Previous Work

We review a number of related ow visualization tehniques leading up to the work presented in

this paper.

There are a number of papers related to stream ribbons and stream surfaes. Hultquist [5℄

popularized a method where partiles are repeatedly advaned a short distane through the ow �eld,

and new polygons are appended to the downstream edge of the surfae. If the ribbons grew too wide

suh as when in a divergent ow, the spaing of the partiles were adjusted to maintain adequate

sampling aross the width of the ribbon. An alternate method for generating stream ribbons whih

does not have to worry about ribbons getting too wide is also presented in [8℄. Generation of

stream ribbons and stream tubes have also been improved and extended to unstrutured grids [12℄

by arrying out the alulations in a anonial oordinate system instead of the physial oordinate

system.

Instead of expliitly traing a urve through spae to generate a stream surfae, van Wijk

introdued two alternative ways of generating a surfae-like ow struture. In [15℄, he de�ned

surfae-partiles as very small faets, modeled as points with a normal. The shaded moving surfae-

partiles generate a textured surfae whih gave an impression of the ow struture. In [17℄, he

desribed a new method for onstruting stream surfaes by representing it as an impliit funtion

f(x) = C. By varying C, a family of stream surfaes an be generated. The idea of stream

funtions were also employed earlier in the eÆient generation of families of streamlines [6℄.



1. INTRODUCTION 2

Another method that also uses impliit surfae representation is the stream ball tehnique

presented by Brill et al. [2℄. Eah partile in the ow �eld is assoiated with a funtion that

drops o� with distane. A stream surfae is de�ned as an isosurfae over a distribution or path

of suh partiles. A nie property of stream balls is their ability to automatially split or merge

depending on their distane to neighboring partiles.

Rather than sweeping out a point or a urve, Shroeder et al. [18℄ trae out an n-sided polygon

through the ow �eld. This stream polygon is oriented normal to the loal ow diretion. Loal

deformation due to rigid body rotation and both normal and shear strain an be visualized.

Flow volumes [7℄ are 3D equivalent of streamlines. Tetrahedral subvolumes are swept out in

spae and volume rendered produing a visualization with smoke-like e�ets showing the path of

di�erent subvolumes through spae.

These di�erent ow visualization tehniques deal with the issue of splitting (e.g. in divergent

�eld) and merging (onvergent �eld) in their own way. When two partiles are headed away from

eah other in opposite diretions, [5℄ assumes that there is zero-veloity ritial point in between

them. Thus they will split at this ritial point when the distane between them beomes too big.

Likewise, they will merge when they ome too lose to eah other. In [17℄, stream surfaes avoid

obstales by assigning a speial low f value, f

min

, to grids within obstales. By seleting C values

above f

min

, surfaes are guaranteed not to ross the obstales. Stream balls handle the split/merge

problem elegantly. Although, in order to get smooth stream surfaes lose to the atual surfae, a

lot of stream balls are required followed by an isosurfae extration to form a ontinuous skin and

is thus signi�antly more expensive. Curvature based adaptive subdivision of tetrahedral volumes

is employed to maintain auray partiularly in divergent ow �elds [7℄.

1.2 Overview

Based on previous work, it is obvious that the shape (spatial distribution) and dimensionality

(onnetedness) of the seed points de�ne the appearane of the resulting visualization as well as the

ability to represent new features in the ow �eld. 0D or individual seed points produe streamlines.

1D or seed points arranged on a rake or urve produe stream surfaes. 2D or seed points arranged

to form a losed polygon produe stream tubes and polygons. 3D or seed points arranged to form

a solid shape produe ow volumes or stream bubbles.

Just as stream surfaes represent additional ow features (e.g. twisting) than streamlines, and

just as stream polygons an show yet additional features (e.g. normal and shear strain) than stream

surfaes, stream bubbles an show new features too (e.g. expansion and ontration of the loal ow

�eld, and loal rotation).

Our urrent implementation of stream bubbles uses the 8 verties of a hexahedral ell as the

initial set of seed points. The bubble itself is ontained within this bounding ell volume and is

represented by a NURBS surfae. We hose this type of surfae beause of its onvex hull property.

The stream bubble is a onservative estimate of the shape and loation of the moving mass within the

onvex hull of the 8 seed points. As the 8 seed points are individually traed through the vetor �eld,

the shape of the stream bubble hanges with the loal ow �eld. With only 8 ontrol verties, the

alulation of stream bubbles is not muh more expensive than stream surfaes or stream polygons.

Stream bubbles may be small or large. Smaller bubbles allow more detailed examination of the ow,

while larger bubbles represent a gross depition of the ow �eld.

Beause the 8 ontrol points of eah stream bubble are traed individually, two stream bubbles

may ollide and penetrate through eah other. If they do, no speial handling is neessary as the

two stream bubbles will appear to merge. Of ourse, sine they are really omputed separately, they

an just as easily split into two again.

Setion 2 explains how we onstrut a stream bubble with 8 ontrol points using a NURBS

surfae. This is followed by a disussion in Setion 3 of how stream bubbles are deformed and

split when they enounter obstales, or broken when the ow is highly divergent and strethes or

bends the bubbles too muh. In Setion 4, we desribe our implementation and some results. We

summarize our �ndings and give a list of improvements that we are working on in Setion 5.
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2 NURBS AND STREAM BUBBLES

Computational uid dynamis (CFD) simulations alulation ow �elds over a omputational

grid or mesh. The mesh may be regular, retilinear, urvilinear, or irregular. The �rst three types of

mesh have ells that are hexahedral in shape. That is, eah ell has 6 faes and 8 orner points. On

the other hand, ells in irregular meshes are typially tetrahedral in shape with 4 faes and 4 orner

points. Eah of these ell types an potentially be a seed volume for starting a stream bubble. For

example, if a hexahedral ell from the omputational grid is seleted as a seed volume, then a stream

bubble is reated within that volume in physial spae. As the 8 orner points of the hexahedral ell

are adveted, the stream bubble is advaned through the volume. Similarly, a tetrahedral ell may

be seleted as a seed volume. In this paper, we present how a hexahedral ell is used to generate

stream bubbles.

There are several options for reating a surfae de�ned by 8 ontrol points. Spei�ally, one an

selet from an array of surfae de�nitions suh as Catmull-Rom, Bezier, NURBS, et., as well as the

degree or smoothness of the surfae. Sine the stream bubble is to represent the mass bounded by

the 8 ontrol points, an important onsideration is the onvex hull property of the surfae. For this

paper, we onsider stream bubbles de�ned as bi-ubi NURBS surfaes.

2.1 NURBS

NURBS or Non-Uniform Rational B-Splines surfaes are quite exible, allowing for unevenly

spaed knot points, losed surfaes, and additional shape ontrol with a set of weights over a small

number of ontrol points. The NURBS surfae Q(u; v) de�ned over the parameters u and v with m

and n ontrol points along eah respetive parameter, given the ontrol points P

i;j

and orresponding

weight w

i;j

is de�ned in Equation 2.1 below. The produt of the B-Spline basis funtions M

i;d

and

N

j;d

, both of order d, form the tensor basis funtion used by the NURBS surfae. The Cox-deBoor

formulation for the B-Splines funtions are presented below as well [9, 16℄.

Q(u; v) =

P

m

i=0

P

n

j=0

w

i;j
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(2.3)

2.2 Stream Bubble

The bounding volume or ell of a stream bubble is de�ned by 8 verties [0..7℄, as illustrated in

Figure 2.1. The axes u, v, w are de�ned at the geometri enter of the ell. Note that over the

ourse of a stream bubble's evolution, the ell will deform and the axes may not be orthogonal to

eah other. The 6x6 matrix in Figure 2.2 shows the winding sequene of ontrol points needed to get

a smooth losed surfae. Figure 2.3 shows a stream bubble and its bounding volume, while Figure

2.4 shows the wireframe rendering. Figure 2.5 shows two inter-penetrating stream bubbles.
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Figure 2.1: Stream bubble ell
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Figure 2.2: Winding sequene

Figure 2.3: Stream

bubble

Figure 2.4: Wireframe

Figure 2.5: Two stream

bubbles

3 FLOW IN SPECIAL REGIONS

The hoie of integration for adveting the ontrol points a�ets the quality of the visualization.

For stream bubbles, we use an expliit �xed time step integration for two reasons: (1) we are

simultaneously traking 8 ontrol points per stream bubble and they need to be synhronized, and

(2) while we are urrently looking at steady state ow, using expliit �xed time step integration will

failitate extending our work to time dependent ows. Beyond these two fators, expliit integration

also failitates the handling of ow in speial regions suh as in divergent or vortex �elds. Here, we

examine two speial ases.

3.1 Flows Near Obstales

Flows near obstales, suh as wing surfaes, are usually handled di�erently. For example, adaptive

time step algorithms are used to prevent ollision of streamlines with obstales [1℄. Beause we are

using �xed step integrations, we need to handle the ase when some of the ontrol verties enounter

an obstale. In this situation, it would appear that ow must be stopped beause there is no valid

data to proeed with the advetion. However, in reality, the ow ontinues along the boundary

of the surfae. We therefore look at two geometri methods to deal with the ase of missing data

suh as when running into obstales or into a boundary region. We all these the erosion and split

proedures.

Erosion

Erosion is a heuristi strategy based on observing ow behavior. When a bubble runs into an

obstale, part of the objet is dragged, perhaps through skin frition, by the obstale and the objet

is strethed or deformed.

Figure 3.1 shows three ases of erosion. Sine the stream bubbles in hexahedral ells have 8

ontrol verties, eah vertex has 3 immediately onneted neighbors. For example, the neighbors of

vertex 2 in Figure 2.1 are verties 1, 3, and 6; eah pair is onneted by a solid line. In ase (a),

vertex 2 is inside an obstale and only 1 of its neighbors is outside the obstale. When this ase is

enountered, vertex 2 is moved along the edge with vertex 1 until it is just outside the obstale to

position 2". In ase (b), two of vertex 2's neighbors are outside the obstale. For this ase, vertex

2 is moved to 2" just outside the obstale in the diretion that is half way between vertex 1 and 3.

The orresponding edges are also adjusted aordingly. In ase (), vertex 2 is moved towards the
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enter of vertex 1, 3, and 6. Integration is resumed using the new set of vertex positions. Figures

3.2 a1 and a2 show an example of how a stream bubble is eroded.
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Figure 3.1: Erosion proedure

Split

While the erosion proedure allows the stream bubble to slide and deform along an obstale, it

annot deal with the situation of invalid enter data of neighbors (e.g. in Figures 3.1 b and  where

the midpoint or enter of the neighbors is still within the obstale), or the situation where all the

vertex data are valid, but the ell or volume of the stream bubble still intersets the obstale. For

these ases, we use the split strategy presented below.

a1 a2 b1 b2

Figure 3.2: Split proedure

We desribe the splitting proedure using 2D illustrations. As the bounding ell ABCD ap-

proahes an obstale from the left (See Figure 3.3a), we split the stream bubble vertially against Y

axis. The natural split is along the obstale's tangent lines of B'C' and A'D' (in fat they are tangent

planes in 3D). The resulting bounding ells would then be AB'C'D and A'BCD'. Here the tangents

are omputed at the intersetions of the bounding ell with the obstale. In 3D, the tangent points

are the maximum or minimum intersetion points between the obstale and the bounding volume.

Note that for some ases, the maximum or minimum point might not just be on the edge as shown

in the �gure. At this time, we pik the one that follows the obstale's shape best. This an be done

by simply omparing sampled surfae points of the obstale in the moving diretion X.

However, we have to know split diretion �rst. There are four fators a�eting the deision.

Splitting diretion

� Moving diretion: split will be perpendiular to the diretion of motion. For example, in Figure

3.3b, the stream bubble (represented by its bounding box) is moving along the X diretion.

Therefore, the split will either be by Y (split into top and bottom halves) or by Z (split into

left and right halves).

� Amount of overlap with obstale: selet the split diretion with smaller overlap ratio. The

ratio is alulated as the amount of intrusion by the stream bubble into the obstale to the

size of the stream bubble. This ratio is alulated in both possible diretions, and the split is

made along the diretion with smaller intrusion. Using Figure 3.3 as an illustration, (ij/IJ)

is the ratio along Z, while (hi/HI) is the ratio along Y.
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� Shape of the obstale: split is made along the diretion of least resistane with the obstale.

Again using Figure 3.3, the split diretion is along the smaller of hi or hk.

� Use an arbitrary default split diretion (Y in our ase) when the three ases above fail to

provide a deision.

(a)

Obstacle
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B

e

f c

y
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Moving

x

(b)

I

H
z

y

Obstacle

J

m

n
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t

k

K

h
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()

Figure 3.3: Determining split tangent plane and diretion. ABCD and HIJK are 2D

bounding boxes of a stream bubble ell. abd and hijk are 2D bounding boxes of the

intersetion area between the obstale and the stream bubble ell. In both images on the

left, Z is pointing out of the page. On the right, X is pointing into the page.

Set new verties

Splitting a stream bubble involves reating new verties to go with eah half of the stream bubble.

That is, 8 new verties need to be reated. The general idea is to keep roughly half of the ontrol

points with eah of the two new stream bubbles, while the other half will have to be reated based

on the split diretion and the original ontrol verties. One possible way of arrying this task out is

to vary the weights of the ontrol points and introdue new verties along the way.

In our approah, one we deide on the split diretion, the split will proeed along the obstale's

tangent planes to maintain as muh of the size and shape of the stream bubble. The setting of new

points is similar to erosion. The di�erene is that the new set of points have to be within the region

AB'C'D or A'BCD'. Figures 3.2 b1 and b2 show an example of how a stream bubble is split into

two piees.

3.2 Flows in Divergent or Vortex Regions

Let us look at the three ases in Figure 3.4. In all three instanes, there are no obstales. The

retangles represent the seed volume. One an see that as the retangle gets deformed by the ow,

it may streth, urve, and generally distort. Sine we are using bi-ubi surfaes to represent the

bubble, it annot represent a onave region along an edge. Hene, when the ow urvature is high,

we need to split the bubbles so that they an better apture the loal urvature of the ow. If the

seed volume is simply strething in opposite diretions, the bubble will quikly �ll the entire span of

the volume making it appear stati as opposed to moving through spae. For this ase, we provide

the option of splitting suh bubbles into smaller piees so that they an ontinue to move and get

distorted.

The splitting proedure for these ases is straight forward. We simple ut the bubble in half.

This is implemented as a two step break proedure. We �rst hek if the stream bubble's size is over

some limit, and if so, we then hek if the ratio of stream bubble ell's longest axis and shortest

axis is over some limit. If both thresholds are exeeded, then a split along the enter plane, whose

normal is parallel to the longest axis, will happen. The setting of new added verties is similar to

split.

4 IMPLEMENTATION AND RESULTS

The following proedure is used to render stream bubbles in the 3D ow �eld.

1. Initialize seed volume(s). A seed volume an be spei�ed either as one or more ontiguous

omputational grid ells (assuming hexahedral ells) or by speifying bounds in physial spae.
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Figure 3.4: Divergent ows

2. Use the 2nd order Euler-Cauhy algorithm or the 4th order Runge-Kutta algorithm to alulate

the next step positions of the 8 orner verties.

3. If a vertex falls within a no data zone (e.g. inside an obstale), apply the erosion proedure.

4. If there is a non-empty intersetion between an obstale and the ell or volume of the stream

bubble ontrol verties, apply the split proedure.

5. If stream bubble streth too muh, then use break proedure.

6. If some verties are outside the boundary, or the volume is getting too small, then terminate

stream bubble.

7. Update stream bubble shape and position, go to step (2).

4.1 PLOT3D Data Set

We use syntheti data sets as well as CFD data sets from NASA to test our method. The data

sets are in PLOT3D format [1℄ whih inludes (a) a �le with the physial oordinates for eah grid

point in the omputational grid, and (b) another �le with �eld information alulated at eah of

the grid positions. Flow veloity is a derived quantity from these �eld information. Point loation

alulations is failitated by the use of the Field Enapsulation Library (FEL) [3℄.

time:0 0.123 3.068

7.731 7.976 8.713

10.308 13.376 19.02

Figure 4.1: Time series of a stream bubble undergoing split and erosion. Color is mapped

to relative volume hange of the stream bubbles.

Figure 4.1 shows a time series of a stream bubble owing around a wing. The enter gray objet

is the geometry of a wing. In the beginning, the stream bubble undergoes a split proess. Then

the top half of the split stream bubble mainly rotates and deforms, and the bottom half slightly
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time:0 4.605 9.747 24.421

Figure 4.2: Streamlines super-imposed with the bubbles. Color is mapped to relative

volume hange of the stream bubbles.

erodes while it ows under the wing. Later, the bottom half has several splits, they twist and

rotate more radially. The olor of the stream bubbles are mapped to the relative volume hange

of the stream bubbles, while other olor mappings suh as absolute volume, veloity magnitude

et. are also available as options. Figure 4.2 is another view for Figure 4.1, and stream bubbles

are drawn together with streamlines. The streamlines are seeded from the ontrol points and are

olored aording to the ontrol points' sequene (e.g. ontrol point 0 is always olored green, et.).

The stream bubbles are generated at interative rates. Loal details an be seen at di�erent stages

through the ow. Shape deformations, strething, rotation and volume hanges an be observed as

the stream bubbles move through the ow �eld.

4.2 Spiral Data Set

We also used a mathematially de�ned spiral data set generated by speifying rotation and

translation parameters. There are no obstales in the �eld. Looking at Figure 4.3, the spiral ow

goes along from left to right along the Z axis whih is entered in the middle of the ow volume.

Here we present two sets of ow sequenes using the same spiral data set.

The ow in Figure 4.3 is free. As the stream bubble rotate in the �eld, it also strethes along

axis Z, and �nally oupies almost the whole �eld. But it is not representative, beause the loal

ow struture in fat is muh more deliate. Figure 4.4 is front view from axis Z of Figure 4.3. It

learly shows the bubble is aross the vortial area. In Figure 4.5, the stream bubble is modi�ed by

our break method. The thresholds for breaking is interative. With break sale thresholds (size and

axis ratios) set to nine and two, or when the volume of a stream bubble is over nine times of the

prede�ned base volume, and when the ratio of the longest axis and the shortest axis of the stream

bubble is over two, the stream bubble will split. In Figure 4.5, the stream bubble breaks into two

in the seond sequene, and break again into four in the third sequene and more in the following

frames after the stream bubbles are strethed beyond the thresholds. Figure 4.6 is front view of

Figure 4.5, but now stream bubbles' ow follows the vortial path.

For both Figure 4.4 and Figure 4.6, we use texture mapping whih gives better depition of loal

rotation and expansion. In Figure 4.3 and Figure 4.5, we use a blue-red (low to high) olor mapping

based on absolute volume magnitude. When stream bubbles streth or expand, or when stream

bubbles break, olor will hange orrespondingly.

5 CONCLUSIONS

In summary, we introdued the onept of stream bubble for ow visualization. Among its bene�ts

are:

� ability to show ow features suh as expansion and ompression, twisting and rotation;

� ompat representation for a large portion of the ow volume whih allows for erosion along an

obstale surfae and splitting against an obstale; or break in highly divergent �eld or vortial

�eld;
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time:0 4.051 5.888

10.701 12.442 14.373

Figure 4.3: Side View: Time series of a stream bubble in vortex �eld without breaks. Color

is mapped to volume of bubble. Note that bubble gets elongated but does not bend and

urve as expeted beause of the degree of the NURBS representation used.

time:1.27 5.634 8.109 10.812 13.318 14.915

Figure 4.4: Front View: Time series of a stream bubble in vortex �eld without breaks.

Same as previous �gure but with texture mapping.

time:1.811 1.923 4.993

8.655 9.284 10.986

Figure 4.5: Side View: Time series of a broken stream bubble in vortex �eld. Color is

mapped to bubble volume. This time the urvature of the ow is manifested in the hain

of bubbles.

time:1.863 1.977 3.764 4.64 9.126 11.789

Figure 4.6: Front View: Time series of a broken stream bubble in vortex �eld. Same as

previous �gure but with texture mapping.
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� sine eah stream bubble is traked separately, there is no need to expliitly merge upon ontat

with another stream bubble;

� it generalizes a set of other ow visualization tehniques { streamline representation from

individual vertex, stream ribbon representation from pairs of verties, and stream polygon

representation from faes of the hexahedral ell.

There are a number of things we are urrently working on to improve stream bubbles. The list

inludes: investigation of the use of weights to failitate the splitting or breaking proess; evaluating

other types and degrees of surfae representation aside from the bi-ubi NURBS used in this paper;

extensions to non-hexahedral seeds so as to support ow data de�ned over unstrutured meshes;

and extension to time dependent ow data visualization.
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