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abstra
t

This paper introdu
es a new relatively inexpensive te
hnique { Stream bubbles for 3D 
ow

visualization. The physi
al analogy to this te
hnique are bubbles (air, 
arbon-dioxide, oil,

et
.) that 
an be observed in nature with interesting shapes and varying speeds. A stream

bubble is represented by NURBS with only 8 
ontrol verti
es, although other representations

are also possible. Its internal shape 
hanges over time and shows twisting and stret
hing,

as well as expansion and 
ontra
tion along the 
ow. Upon en
ountering an obsta
le, it

will automati
ally erode and/or split in an intuitively simple geometri
 way. For highly

divergent and vorti
al �elds, stream bubbles 
an also break apart based on the aspe
t

ratio of the bounding volume. When two or more stream bubbles meet, no expli
it merge

operation is needed sin
e the surfa
es will simply interse
t ea
h other to form a 
omposite

surfa
e. Bubbles may be of di�erent sizes. Large bubbles give a 
oarse global view of

the 
ow stru
ture, while smaller bubbles give a more a

urate depi
tion of the lo
al 
ow

stru
ture. In addition, our interfa
e provides a good view of the 
ow stru
ture by allowing

users to intera
tively move and resize di�erent stream bubbles together with an animated

or step-by-step playba
k fa
ility.

Keywords: Ve
tor �eld, NURBS, streamline, adve
tion, splitting, expansion, 
ontra
tion.
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1 INTRODUCTION

In physi
al measurements su
h as those from wind tunnel experiments, foreign materials su
h as

smoke, oil, or dye are routinely introdu
ed into the environment to better observe the 
ow patterns

[13℄. However, these experiments tend to be expensive; 
ontrol of environment and reprodu
ibility of

results are also issues to 
onsider [10, 13℄. On the other hand, 
omputational 
uid dynami
s (CFD)

simulations 
oupled with 
ow visualization te
hniques is gaining a

eptan
e as a valid method for

s
ienti�
 investigation [11℄.

Flow visualization methods may either be spa
e �lling (e.g. line integral 
onvolution (LIC) [4℄,

spot noise [14℄), or a relatively sparse sampling of the 
ow �eld. Among the te
hniques in the latter


ategory are: streamlines, stream ribbons (or stream surfa
e), stream tubes, et
. The te
hnique

presented in this paper, extends the 
hoi
e in this 
ategory, but with the potential for being volume

�lling as well. Here are some de�nitions:

� A streamline is the path of a massless parti
le from an initial seed position within a 3D 
ow

�eld. Every point along the streamline has the velo
ity �eld tangent to it.

� A stream ribbon is the path swept by a deformable line segment through a 3D 
ow �eld. For

a set of dis
retized seeds (
oming out of a rake), a stream surfa
e 
an be built by tiling a series

of adja
ent streamlines with polygons.

� A stream tube is de�ned as the surfa
e swept out by a 
losed polygon along a streamline. A

stream polygon shows an instan
e in \time" as a 
losed polygon is being swept out along a

streamline.

� A 
ow volume is de�ned as the spa
e swept out by a subvolume (e.g. tetrahedra). A stream

bubble shows an instan
e in \time" as a subvolume is being swept out. It is de�ned as a 
losed

surfa
e along the path swept out by a set of seed points initially de�ning a subvolume of the

3D 
ow, and shows the evolution of that subvolume as it goes through the 3D 
ow.

While streamlines may reveal the magnitude and 
ow patterns, stream ribbons show twisting

motion along the lo
al 
ow �eld. In addition to these, stream tubes also show lo
al deformations

due to normal and shear strains. Be
ause stream bubbles tra
k the shape 
hanges in a lo
al volume

of spa
e, this te
hnique 
an also show lo
al 
ompression or expansion of the 
ow �eld. With texture

mapping, lo
al rotation and stret
hing 
an be easily observed as well. Computationally, it is also

less expensive than volume tra
king method like stream balls [2℄. These di�erent te
hniques are

reviewed in the next se
tion.

1.1 Previous Work

We review a number of related 
ow visualization te
hniques leading up to the work presented in

this paper.

There are a number of papers related to stream ribbons and stream surfa
es. Hultquist [5℄

popularized a method where parti
les are repeatedly advan
ed a short distan
e through the 
ow �eld,

and new polygons are appended to the downstream edge of the surfa
e. If the ribbons grew too wide

su
h as when in a divergent 
ow, the spa
ing of the parti
les were adjusted to maintain adequate

sampling a
ross the width of the ribbon. An alternate method for generating stream ribbons whi
h

does not have to worry about ribbons getting too wide is also presented in [8℄. Generation of

stream ribbons and stream tubes have also been improved and extended to unstru
tured grids [12℄

by 
arrying out the 
al
ulations in a 
anoni
al 
oordinate system instead of the physi
al 
oordinate

system.

Instead of expli
itly tra
ing a 
urve through spa
e to generate a stream surfa
e, van Wijk

introdu
ed two alternative ways of generating a surfa
e-like 
ow stru
ture. In [15℄, he de�ned

surfa
e-parti
les as very small fa
ets, modeled as points with a normal. The shaded moving surfa
e-

parti
les generate a textured surfa
e whi
h gave an impression of the 
ow stru
ture. In [17℄, he

des
ribed a new method for 
onstru
ting stream surfa
es by representing it as an impli
it fun
tion

f(x) = C. By varying C, a family of stream surfa
es 
an be generated. The idea of stream

fun
tions were also employed earlier in the eÆ
ient generation of families of streamlines [6℄.
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Another method that also uses impli
it surfa
e representation is the stream ball te
hnique

presented by Brill et al. [2℄. Ea
h parti
le in the 
ow �eld is asso
iated with a fun
tion that

drops o� with distan
e. A stream surfa
e is de�ned as an isosurfa
e over a distribution or path

of su
h parti
les. A ni
e property of stream balls is their ability to automati
ally split or merge

depending on their distan
e to neighboring parti
les.

Rather than sweeping out a point or a 
urve, S
hroeder et al. [18℄ tra
e out an n-sided polygon

through the 
ow �eld. This stream polygon is oriented normal to the lo
al 
ow dire
tion. Lo
al

deformation due to rigid body rotation and both normal and shear strain 
an be visualized.

Flow volumes [7℄ are 3D equivalent of streamlines. Tetrahedral subvolumes are swept out in

spa
e and volume rendered produ
ing a visualization with smoke-like e�e
ts showing the path of

di�erent subvolumes through spa
e.

These di�erent 
ow visualization te
hniques deal with the issue of splitting (e.g. in divergent

�eld) and merging (
onvergent �eld) in their own way. When two parti
les are headed away from

ea
h other in opposite dire
tions, [5℄ assumes that there is zero-velo
ity 
riti
al point in between

them. Thus they will split at this 
riti
al point when the distan
e between them be
omes too big.

Likewise, they will merge when they 
ome too 
lose to ea
h other. In [17℄, stream surfa
es avoid

obsta
les by assigning a spe
ial low f value, f

min

, to grids within obsta
les. By sele
ting C values

above f

min

, surfa
es are guaranteed not to 
ross the obsta
les. Stream balls handle the split/merge

problem elegantly. Although, in order to get smooth stream surfa
es 
lose to the a
tual surfa
e, a

lot of stream balls are required followed by an isosurfa
e extra
tion to form a 
ontinuous skin and

is thus signi�
antly more expensive. Curvature based adaptive subdivision of tetrahedral volumes

is employed to maintain a

ura
y parti
ularly in divergent 
ow �elds [7℄.

1.2 Overview

Based on previous work, it is obvious that the shape (spatial distribution) and dimensionality

(
onne
tedness) of the seed points de�ne the appearan
e of the resulting visualization as well as the

ability to represent new features in the 
ow �eld. 0D or individual seed points produ
e streamlines.

1D or seed points arranged on a rake or 
urve produ
e stream surfa
es. 2D or seed points arranged

to form a 
losed polygon produ
e stream tubes and polygons. 3D or seed points arranged to form

a solid shape produ
e 
ow volumes or stream bubbles.

Just as stream surfa
es represent additional 
ow features (e.g. twisting) than streamlines, and

just as stream polygons 
an show yet additional features (e.g. normal and shear strain) than stream

surfa
es, stream bubbles 
an show new features too (e.g. expansion and 
ontra
tion of the lo
al 
ow

�eld, and lo
al rotation).

Our 
urrent implementation of stream bubbles uses the 8 verti
es of a hexahedral 
ell as the

initial set of seed points. The bubble itself is 
ontained within this bounding 
ell volume and is

represented by a NURBS surfa
e. We 
hose this type of surfa
e be
ause of its 
onvex hull property.

The stream bubble is a 
onservative estimate of the shape and lo
ation of the moving mass within the


onvex hull of the 8 seed points. As the 8 seed points are individually tra
ed through the ve
tor �eld,

the shape of the stream bubble 
hanges with the lo
al 
ow �eld. With only 8 
ontrol verti
es, the


al
ulation of stream bubbles is not mu
h more expensive than stream surfa
es or stream polygons.

Stream bubbles may be small or large. Smaller bubbles allow more detailed examination of the 
ow,

while larger bubbles represent a gross depi
tion of the 
ow �eld.

Be
ause the 8 
ontrol points of ea
h stream bubble are tra
ed individually, two stream bubbles

may 
ollide and penetrate through ea
h other. If they do, no spe
ial handling is ne
essary as the

two stream bubbles will appear to merge. Of 
ourse, sin
e they are really 
omputed separately, they


an just as easily split into two again.

Se
tion 2 explains how we 
onstru
t a stream bubble with 8 
ontrol points using a NURBS

surfa
e. This is followed by a dis
ussion in Se
tion 3 of how stream bubbles are deformed and

split when they en
ounter obsta
les, or broken when the 
ow is highly divergent and stret
hes or

bends the bubbles too mu
h. In Se
tion 4, we des
ribe our implementation and some results. We

summarize our �ndings and give a list of improvements that we are working on in Se
tion 5.
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2 NURBS AND STREAM BUBBLES

Computational 
uid dynami
s (CFD) simulations 
al
ulation 
ow �elds over a 
omputational

grid or mesh. The mesh may be regular, re
tilinear, 
urvilinear, or irregular. The �rst three types of

mesh have 
ells that are hexahedral in shape. That is, ea
h 
ell has 6 fa
es and 8 
orner points. On

the other hand, 
ells in irregular meshes are typi
ally tetrahedral in shape with 4 fa
es and 4 
orner

points. Ea
h of these 
ell types 
an potentially be a seed volume for starting a stream bubble. For

example, if a hexahedral 
ell from the 
omputational grid is sele
ted as a seed volume, then a stream

bubble is 
reated within that volume in physi
al spa
e. As the 8 
orner points of the hexahedral 
ell

are adve
ted, the stream bubble is advan
ed through the volume. Similarly, a tetrahedral 
ell may

be sele
ted as a seed volume. In this paper, we present how a hexahedral 
ell is used to generate

stream bubbles.

There are several options for 
reating a surfa
e de�ned by 8 
ontrol points. Spe
i�
ally, one 
an

sele
t from an array of surfa
e de�nitions su
h as Catmull-Rom, Bezier, NURBS, et
., as well as the

degree or smoothness of the surfa
e. Sin
e the stream bubble is to represent the mass bounded by

the 8 
ontrol points, an important 
onsideration is the 
onvex hull property of the surfa
e. For this

paper, we 
onsider stream bubbles de�ned as bi-
ubi
 NURBS surfa
es.

2.1 NURBS

NURBS or Non-Uniform Rational B-Splines surfa
es are quite 
exible, allowing for unevenly

spa
ed knot points, 
losed surfa
es, and additional shape 
ontrol with a set of weights over a small

number of 
ontrol points. The NURBS surfa
e Q(u; v) de�ned over the parameters u and v with m

and n 
ontrol points along ea
h respe
tive parameter, given the 
ontrol points P

i;j

and 
orresponding

weight w

i;j

is de�ned in Equation 2.1 below. The produ
t of the B-Spline basis fun
tions M

i;d

and

N

j;d

, both of order d, form the tensor basis fun
tion used by the NURBS surfa
e. The Cox-deBoor

formulation for the B-Splines fun
tions are presented below as well [9, 16℄.

Q(u; v) =

P

m

i=0

P

n

j=0

w

i;j

P

i;j

M

i;d

(u)N

j;d

(v)

P

m

i=0

P

n

j=0

w

i;j

M

i;d

(u)N

j;d

(v)

(2.1)

M

i;1

(u) =

�

1 if u

i

� u < u

i+1

0 otherwise

M

i;d

(u) =

(u�u

i

)M

i;d�1

(u)

(u

i+d�1

�u

i

)

+

(u

i+d

�u)M

i+1;d�1

(u)

(u

i+d

�u

i+1

)

(2.2)

N

j;1

(v) =

�

1 if v

j

� v < v

j+1

0 otherwise

N

j;d

(v) =

(v�v

j

)N

j;d�1

(v)

(v

j+d�1

�v

j

)

+

(v

j+d

�v)N

j+1;d�1

(v)

(v

j+d

�v

j+1

)

(2.3)

2.2 Stream Bubble

The bounding volume or 
ell of a stream bubble is de�ned by 8 verti
es [0..7℄, as illustrated in

Figure 2.1. The axes u, v, w are de�ned at the geometri
 
enter of the 
ell. Note that over the


ourse of a stream bubble's evolution, the 
ell will deform and the axes may not be orthogonal to

ea
h other. The 6x6 matrix in Figure 2.2 shows the winding sequen
e of 
ontrol points needed to get

a smooth 
losed surfa
e. Figure 2.3 shows a stream bubble and its bounding volume, while Figure

2.4 shows the wireframe rendering. Figure 2.5 shows two inter-penetrating stream bubbles.
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Figure 2.1: Stream bubble 
ell
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Figure 2.2: Winding sequen
e

Figure 2.3: Stream

bubble

Figure 2.4: Wireframe

Figure 2.5: Two stream

bubbles

3 FLOW IN SPECIAL REGIONS

The 
hoi
e of integration for adve
ting the 
ontrol points a�e
ts the quality of the visualization.

For stream bubbles, we use an expli
it �xed time step integration for two reasons: (1) we are

simultaneously tra
king 8 
ontrol points per stream bubble and they need to be syn
hronized, and

(2) while we are 
urrently looking at steady state 
ow, using expli
it �xed time step integration will

fa
ilitate extending our work to time dependent 
ows. Beyond these two fa
tors, expli
it integration

also fa
ilitates the handling of 
ow in spe
ial regions su
h as in divergent or vortex �elds. Here, we

examine two spe
ial 
ases.

3.1 Flows Near Obsta
les

Flows near obsta
les, su
h as wing surfa
es, are usually handled di�erently. For example, adaptive

time step algorithms are used to prevent 
ollision of streamlines with obsta
les [1℄. Be
ause we are

using �xed step integrations, we need to handle the 
ase when some of the 
ontrol verti
es en
ounter

an obsta
le. In this situation, it would appear that 
ow must be stopped be
ause there is no valid

data to pro
eed with the adve
tion. However, in reality, the 
ow 
ontinues along the boundary

of the surfa
e. We therefore look at two geometri
 methods to deal with the 
ase of missing data

su
h as when running into obsta
les or into a boundary region. We 
all these the erosion and split

pro
edures.

Erosion

Erosion is a heuristi
 strategy based on observing 
ow behavior. When a bubble runs into an

obsta
le, part of the obje
t is dragged, perhaps through skin fri
tion, by the obsta
le and the obje
t

is stret
hed or deformed.

Figure 3.1 shows three 
ases of erosion. Sin
e the stream bubbles in hexahedral 
ells have 8


ontrol verti
es, ea
h vertex has 3 immediately 
onne
ted neighbors. For example, the neighbors of

vertex 2 in Figure 2.1 are verti
es 1, 3, and 6; ea
h pair is 
onne
ted by a solid line. In 
ase (a),

vertex 2 is inside an obsta
le and only 1 of its neighbors is outside the obsta
le. When this 
ase is

en
ountered, vertex 2 is moved along the edge with vertex 1 until it is just outside the obsta
le to

position 2". In 
ase (b), two of vertex 2's neighbors are outside the obsta
le. For this 
ase, vertex

2 is moved to 2" just outside the obsta
le in the dire
tion that is half way between vertex 1 and 3.

The 
orresponding edges are also adjusted a

ordingly. In 
ase (
), vertex 2 is moved towards the
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enter of vertex 1, 3, and 6. Integration is resumed using the new set of vertex positions. Figures

3.2 a1 and a2 show an example of how a stream bubble is eroded.
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Figure 3.1: Erosion pro
edure

Split

While the erosion pro
edure allows the stream bubble to slide and deform along an obsta
le, it


annot deal with the situation of invalid 
enter data of neighbors (e.g. in Figures 3.1 b and 
 where

the midpoint or 
enter of the neighbors is still within the obsta
le), or the situation where all the

vertex data are valid, but the 
ell or volume of the stream bubble still interse
ts the obsta
le. For

these 
ases, we use the split strategy presented below.

a1 a2 b1 b2

Figure 3.2: Split pro
edure

We des
ribe the splitting pro
edure using 2D illustrations. As the bounding 
ell ABCD ap-

proa
hes an obsta
le from the left (See Figure 3.3a), we split the stream bubble verti
ally against Y

axis. The natural split is along the obsta
le's tangent lines of B'C' and A'D' (in fa
t they are tangent

planes in 3D). The resulting bounding 
ells would then be AB'C'D and A'BCD'. Here the tangents

are 
omputed at the interse
tions of the bounding 
ell with the obsta
le. In 3D, the tangent points

are the maximum or minimum interse
tion points between the obsta
le and the bounding volume.

Note that for some 
ases, the maximum or minimum point might not just be on the edge as shown

in the �gure. At this time, we pi
k the one that follows the obsta
le's shape best. This 
an be done

by simply 
omparing sampled surfa
e points of the obsta
le in the moving dire
tion X.

However, we have to know split dire
tion �rst. There are four fa
tors a�e
ting the de
ision.

Splitting dire
tion

� Moving dire
tion: split will be perpendi
ular to the dire
tion of motion. For example, in Figure

3.3b, the stream bubble (represented by its bounding box) is moving along the X dire
tion.

Therefore, the split will either be by Y (split into top and bottom halves) or by Z (split into

left and right halves).

� Amount of overlap with obsta
le: sele
t the split dire
tion with smaller overlap ratio. The

ratio is 
al
ulated as the amount of intrusion by the stream bubble into the obsta
le to the

size of the stream bubble. This ratio is 
al
ulated in both possible dire
tions, and the split is

made along the dire
tion with smaller intrusion. Using Figure 3.3
 as an illustration, (ij/IJ)

is the ratio along Z, while (hi/HI) is the ratio along Y.
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� Shape of the obsta
le: split is made along the dire
tion of least resistan
e with the obsta
le.

Again using Figure 3.3
, the split dire
tion is along the smaller of hi or hk.

� Use an arbitrary default split dire
tion (Y in our 
ase) when the three 
ases above fail to

provide a de
ision.

(a)

Obstacle

A

B

e

f c

y

C

D

d

u

v

a

b

Moving

x

(b)

I

H
z

y

Obstacle

J

m

n

s

t

k

K

h

i j

(
)

Figure 3.3: Determining split tangent plane and dire
tion. ABCD and HIJK are 2D

bounding boxes of a stream bubble 
ell. ab
d and hijk are 2D bounding boxes of the

interse
tion area between the obsta
le and the stream bubble 
ell. In both images on the

left, Z is pointing out of the page. On the right, X is pointing into the page.

Set new verti
es

Splitting a stream bubble involves 
reating new verti
es to go with ea
h half of the stream bubble.

That is, 8 new verti
es need to be 
reated. The general idea is to keep roughly half of the 
ontrol

points with ea
h of the two new stream bubbles, while the other half will have to be 
reated based

on the split dire
tion and the original 
ontrol verti
es. One possible way of 
arrying this task out is

to vary the weights of the 
ontrol points and introdu
e new verti
es along the way.

In our approa
h, on
e we de
ide on the split dire
tion, the split will pro
eed along the obsta
le's

tangent planes to maintain as mu
h of the size and shape of the stream bubble. The setting of new

points is similar to erosion. The di�eren
e is that the new set of points have to be within the region

AB'C'D or A'BCD'. Figures 3.2 b1 and b2 show an example of how a stream bubble is split into

two pie
es.

3.2 Flows in Divergent or Vortex Regions

Let us look at the three 
ases in Figure 3.4. In all three instan
es, there are no obsta
les. The

re
tangles represent the seed volume. One 
an see that as the re
tangle gets deformed by the 
ow,

it may stret
h, 
urve, and generally distort. Sin
e we are using bi-
ubi
 surfa
es to represent the

bubble, it 
annot represent a 
on
ave region along an edge. Hen
e, when the 
ow 
urvature is high,

we need to split the bubbles so that they 
an better 
apture the lo
al 
urvature of the 
ow. If the

seed volume is simply stret
hing in opposite dire
tions, the bubble will qui
kly �ll the entire span of

the volume making it appear stati
 as opposed to moving through spa
e. For this 
ase, we provide

the option of splitting su
h bubbles into smaller pie
es so that they 
an 
ontinue to move and get

distorted.

The splitting pro
edure for these 
ases is straight forward. We simple 
ut the bubble in half.

This is implemented as a two step break pro
edure. We �rst 
he
k if the stream bubble's size is over

some limit, and if so, we then 
he
k if the ratio of stream bubble 
ell's longest axis and shortest

axis is over some limit. If both thresholds are ex
eeded, then a split along the 
enter plane, whose

normal is parallel to the longest axis, will happen. The setting of new added verti
es is similar to

split.

4 IMPLEMENTATION AND RESULTS

The following pro
edure is used to render stream bubbles in the 3D 
ow �eld.

1. Initialize seed volume(s). A seed volume 
an be spe
i�ed either as one or more 
ontiguous


omputational grid 
ells (assuming hexahedral 
ells) or by spe
ifying bounds in physi
al spa
e.
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Figure 3.4: Divergent 
ows

2. Use the 2nd order Euler-Cau
hy algorithm or the 4th order Runge-Kutta algorithm to 
al
ulate

the next step positions of the 8 
orner verti
es.

3. If a vertex falls within a no data zone (e.g. inside an obsta
le), apply the erosion pro
edure.

4. If there is a non-empty interse
tion between an obsta
le and the 
ell or volume of the stream

bubble 
ontrol verti
es, apply the split pro
edure.

5. If stream bubble stret
h too mu
h, then use break pro
edure.

6. If some verti
es are outside the boundary, or the volume is getting too small, then terminate

stream bubble.

7. Update stream bubble shape and position, go to step (2).

4.1 PLOT3D Data Set

We use syntheti
 data sets as well as CFD data sets from NASA to test our method. The data

sets are in PLOT3D format [1℄ whi
h in
ludes (a) a �le with the physi
al 
oordinates for ea
h grid

point in the 
omputational grid, and (b) another �le with �eld information 
al
ulated at ea
h of

the grid positions. Flow velo
ity is a derived quantity from these �eld information. Point lo
ation


al
ulations is fa
ilitated by the use of the Field En
apsulation Library (FEL) [3℄.

time:0 0.123 3.068

7.731 7.976 8.713

10.308 13.376 19.02

Figure 4.1: Time series of a stream bubble undergoing split and erosion. Color is mapped

to relative volume 
hange of the stream bubbles.

Figure 4.1 shows a time series of a stream bubble 
owing around a wing. The 
enter gray obje
t

is the geometry of a wing. In the beginning, the stream bubble undergoes a split pro
ess. Then

the top half of the split stream bubble mainly rotates and deforms, and the bottom half slightly
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time:0 4.605 9.747 24.421

Figure 4.2: Streamlines super-imposed with the bubbles. Color is mapped to relative

volume 
hange of the stream bubbles.

erodes while it 
ows under the wing. Later, the bottom half has several splits, they twist and

rotate more radi
ally. The 
olor of the stream bubbles are mapped to the relative volume 
hange

of the stream bubbles, while other 
olor mappings su
h as absolute volume, velo
ity magnitude

et
. are also available as options. Figure 4.2 is another view for Figure 4.1, and stream bubbles

are drawn together with streamlines. The streamlines are seeded from the 
ontrol points and are


olored a

ording to the 
ontrol points' sequen
e (e.g. 
ontrol point 0 is always 
olored green, et
.).

The stream bubbles are generated at intera
tive rates. Lo
al details 
an be seen at di�erent stages

through the 
ow. Shape deformations, stret
hing, rotation and volume 
hanges 
an be observed as

the stream bubbles move through the 
ow �eld.

4.2 Spiral Data Set

We also used a mathemati
ally de�ned spiral data set generated by spe
ifying rotation and

translation parameters. There are no obsta
les in the �eld. Looking at Figure 4.3, the spiral 
ow

goes along from left to right along the Z axis whi
h is 
entered in the middle of the 
ow volume.

Here we present two sets of 
ow sequen
es using the same spiral data set.

The 
ow in Figure 4.3 is free. As the stream bubble rotate in the �eld, it also stret
hes along

axis Z, and �nally o

upies almost the whole �eld. But it is not representative, be
ause the lo
al


ow stru
ture in fa
t is mu
h more deli
ate. Figure 4.4 is front view from axis Z of Figure 4.3. It


learly shows the bubble is a
ross the vorti
al area. In Figure 4.5, the stream bubble is modi�ed by

our break method. The thresholds for breaking is intera
tive. With break s
ale thresholds (size and

axis ratios) set to nine and two, or when the volume of a stream bubble is over nine times of the

prede�ned base volume, and when the ratio of the longest axis and the shortest axis of the stream

bubble is over two, the stream bubble will split. In Figure 4.5, the stream bubble breaks into two

in the se
ond sequen
e, and break again into four in the third sequen
e and more in the following

frames after the stream bubbles are stret
hed beyond the thresholds. Figure 4.6 is front view of

Figure 4.5, but now stream bubbles' 
ow follows the vorti
al path.

For both Figure 4.4 and Figure 4.6, we use texture mapping whi
h gives better depi
tion of lo
al

rotation and expansion. In Figure 4.3 and Figure 4.5, we use a blue-red (low to high) 
olor mapping

based on absolute volume magnitude. When stream bubbles stret
h or expand, or when stream

bubbles break, 
olor will 
hange 
orrespondingly.

5 CONCLUSIONS

In summary, we introdu
ed the 
on
ept of stream bubble for 
ow visualization. Among its bene�ts

are:

� ability to show 
ow features su
h as expansion and 
ompression, twisting and rotation;

� 
ompa
t representation for a large portion of the 
ow volume whi
h allows for erosion along an

obsta
le surfa
e and splitting against an obsta
le; or break in highly divergent �eld or vorti
al

�eld;
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time:0 4.051 5.888

10.701 12.442 14.373

Figure 4.3: Side View: Time series of a stream bubble in vortex �eld without breaks. Color

is mapped to volume of bubble. Note that bubble gets elongated but does not bend and


urve as expe
ted be
ause of the degree of the NURBS representation used.

time:1.27 5.634 8.109 10.812 13.318 14.915

Figure 4.4: Front View: Time series of a stream bubble in vortex �eld without breaks.

Same as previous �gure but with texture mapping.

time:1.811 1.923 4.993

8.655 9.284 10.986

Figure 4.5: Side View: Time series of a broken stream bubble in vortex �eld. Color is

mapped to bubble volume. This time the 
urvature of the 
ow is manifested in the 
hain

of bubbles.

time:1.863 1.977 3.764 4.64 9.126 11.789

Figure 4.6: Front View: Time series of a broken stream bubble in vortex �eld. Same as

previous �gure but with texture mapping.
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� sin
e ea
h stream bubble is tra
ked separately, there is no need to expli
itly merge upon 
onta
t

with another stream bubble;

� it generalizes a set of other 
ow visualization te
hniques { streamline representation from

individual vertex, stream ribbon representation from pairs of verti
es, and stream polygon

representation from fa
es of the hexahedral 
ell.

There are a number of things we are 
urrently working on to improve stream bubbles. The list

in
ludes: investigation of the use of weights to fa
ilitate the splitting or breaking pro
ess; evaluating

other types and degrees of surfa
e representation aside from the bi-
ubi
 NURBS used in this paper;

extensions to non-hexahedral seeds so as to support 
ow data de�ned over unstru
tured meshes;

and extension to time dependent 
ow data visualization.
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