
Stream Bubbles for Steady Flow Visualization

Bing Zhang and Alex Pang

Computer Science Department

University of California, Santa Cruz, CA 95064

bing@cse.ucsc.edu, pang@cse.ucsc.edu

www.cse.ucsc.edu/research/avis/bubble.html

Abstract

This paper introduces a new relatively inexpensive tech-

nique – Stream bubbles for 3D flow visualization. The phys-

ical analogy to this technique are bubbles that can be ob-

served in nature with different shapes and varying speeds.

A stream bubble is a surface, defined by a small set of ver-

tices, advected through a flow field. It can easily mani-

fest flow features like twist, stretch, expansion and rotation.

Upon encountering an obstacle, stream bubbles will auto-

matically erode and/or split in an intuitively geometric way.

For highly divergent and vortical fields, it can also break

apart based on the aspect ratio of the bounding volume.

When two or more stream bubbles meet, no explicit merge

operation is needed since the surfaces will simply intersect

each other to form a composite surface. No effort is made

to make the intersection smooth. Stream bubbles may be of

different sizes. Larger bubbles give a coarse global view of

the flow structure, while smaller ones give a more accurate

depiction. In addition, our interface provides an interac-

tive, multi-resolution visualization environment facilitated

with an animated or step-by-step playback function.

Key Words and Phrases: Subdivision, surface fair-

ing, NURBS, flow visualization, streamline, stream ribbon,

stream polygon, stream tube.

1 INTRODUCTION

In physical measurements like those from wind tunnel

experiments, foreign materials (smoke, oil, or dye) are rou-

tinely introduced into the environment to observe the flow

patterns [14]. However, these experiments tend to be ex-

pensive; control of environment and reproducibility of re-

sults are also issues to consider[10, 14]. On the other hand,

computational fluid dynamics (CFD) simulations coupled

with flow visualization techniques is gaining acceptance as

a valid method for scientific investigation [11].

Flow visualization methods may either be space filling

(e.g. line integral convolution (LIC) [3], spot noise [15]),

or a relatively sparse sampling of the flow field. Among the

techniques in the latter category are: streamlines, stream

ribbons (or stream surface), stream tubes, etc. The tech-

nique presented in this paper, stream bubble extends the

choices available in this category, but with the potential for

being volume filling as well. Here are some definitions:

� A streamline is the path of a massless particle from an

initial seed position within a 3D flow field. Every point

along the streamline has the velocity field tangent to it.

� A stream ribbon is the path swept by a deformable line

segment through a 3D flow field. For a set of dis-

cretized seeds (coming out of a rake), a stream surface

can be built by tiling a series of adjacent streamlines

with polygons.

� A stream tube is defined as the surface swept out by a

closed polygon, or stream polygon along a streamline.

The stream polygon shows an instance in “time” of the

flow.

� A flow volume is defined as the space swept out by

a deformable subvolume (e.g. tetrahedra). A stream

bubble inside the subvolume shows an instance in

“time” as the subvolume moves through the flow field.

1.1 Previous Work

We review a number of related flow visualization tech-

niques leading up to the work presented in this paper.

There are a number of papers related to stream ribbons

and stream surfaces. Hultquist [5] popularized a method

where particles are repeatedly advanced a short distance

through the flow field, and new polygons are appended to

the downstream edge of the surface. If the ribbons grew

too wide such as when in a divergent flow, the spacing of

the particles were adjusted to maintain adequate sampling

across the width of the ribbon. An alternate method for gen-

erating stream ribbons which does not have to worry about

ribbons getting too wide is also presented in [9]. Generation

of stream ribbons and stream tubes have also been improved

and extended to unstructured grids [13] by carrying out the

calculations in a canonical coordinate system instead of the

physical coordinate system.

Instead of explicitly tracing a curve through space to gen-

erate a stream surface, van Wijk introduced two alternative

ways of generating a surface-like flow structure. In [16], he

defined surface-particles as very small facets, modeled as

points with a normal. The shaded moving surface-particles

generate a textured surface which gave an impression of the

flow structure. In [17], he described a new method for con-

structing stream surfaces by representing it as an implicit

function f(x) = C. By varying C, a family of stream sur-

faces can be generated. The idea of stream functions were

also employed earlier in the efficient generation of families

of streamlines [6].

Another method that also uses implicit surface represen-

tation is the stream ball technique presented by Brill et al.

[2]. Each particle in the flow field is associated with a func-

tion that drops off with distance. A stream surface is defined

as an isosurface over a distribution along the paths of such

particles. A nice property of stream balls is their ability to

automatically split or merge depending on their distance to

neighboring particles.

Rather than sweeping out a point or a curve, Schroeder et

al. [18] trace out an n-sided polygon through the flow field.

This stream polygon is oriented normal to the local flow

direction. Local deformation due to rigid body rotation and

both normal and shear strain can be visualized.

Flow volumes [8] are 3D equivalent of streamlines.

Tetrahedral subvolumes are swept out in space and volume

rendered producing a visualization with smoke-like effects

showing the path of different subvolumes through space.

These different flow visualization techniques deal with

the issue of splitting (e.g. in divergent fields) and merging

(convergent fields) in their own way. When two particles

are headed away from each other in opposite directions, [5]

assumes that there is zero-velocity critical point in between

them. Thus, they will split at this critical point when the dis-

tance between them becomes too big. Likewise, they will

merge when they come too close to each other. In [17],

stream surfaces avoid obstacles by assigning a special small

value, f
min

, to grids within obstacles. By selecting C val-

ues above f
min

, surfaces are guaranteed not to cross the

obstacles. Stream balls handle the split/merge problem el-

egantly. Although, in order to get smooth stream surfaces

close to the actual surface, a lot of stream balls are required

followed by an isosurface extraction to form a continuous

skin and is thus significantly more expensive. Curvature

based adaptive subdivision of tetrahedral volumes is em-

ployed to maintain accuracy particularly in divergent flow

fields [8].

1.2 Overview

Based on previous work, it is obvious that the shape (spa-

tial distribution) and dimensionality (connectedness) of the

seed points define the appearance of the resulting visual-

ization as well as the ability to represent new features in

the flow field. Individual seed points (0D) produce stream-

lines; seed points arranged on a rake or curve (1D) produce

stream surfaces; seed points arranged to form a closed poly-

gon (2D) produce stream tubes and polygons; seed points

arranged to form a solid shape (3D) produce flow volumes

or stream bubbles.

As dimension increase, stream primitives present more

features than those of lower dimensions. Streamlines show

fundamental properties like magnitude and flow patterns,

while stream ribbons also reveal twisting motions along

the local flow field. In addition to these, stream polygons

(tube) show local deformations due to normal and shear

strains. Because stream bubbles (flow volume) track the

shape changes in a local volume of space, this technique

can also present local compression or expansion of the flow

field. With texture mapping, local rotation and stretching

can easily be observed as well.

Since stream bubbles (flow volume) can capture more

flow information, we choose to use the 8 vertices of a hexa-

hedral cell as the initial set of seed points. A stream bubble

is contained in the cell’s bounding volume. We could sim-

ply observe the cell’s movement in wireframe form or in

polygon form, but it lacks visually pleasing effects – either

lacking depth or lacking smoothness. On the other hand, air,

oil, carbon-dioxide bubbles etc. are commonly observed in

reality. Therefore, we use stream bubbles as a conserva-

tive estimate of the shape and location of the moving mass

within the bounding volume of the 8 seed points. As the 8

seed points are individually traced through the vector field,

the shape of the stream bubble changes with the local flow

field. With only 8 control vertices, the calculation of stream

bubbles is not much more expensive than stream surfaces

or stream polygons. It is also less expensive than volume

tracking method like stream balls [2].

2 STREAM BUBBLES

Computational fluid dynamics (CFD) simulations calcu-

late flow fields over a computational grid or mesh. The

mesh may be regular, rectilinear, curvilinear, or irregular.

The first three types of mesh have cells that are hexahedral

in shape. That is, each cell has 6 faces and 8 corner points.

On the other hand, cells in irregular meshes are typically

tetrahedral in shape with 4 faces and 4 corner points. Each

of these cell types can potentially be a seed volume for start-

ing a stream bubble. For example, if a hexahedral cell from

the computational grid is selected as a seed volume, then

a stream bubble is created within that volume in physical

space. As the 8 corner points of the hexahedral cell are ad-

vected, the stream bubble is advanced through the volume.

Similarly, a tetrahedral cell may be selected as a seed vol-

ume. In this paper, we present how a hexahedral cell is used

to generate stream bubbles in steady flows.

There are several options for creating a surface, such as

implicit surface, parametric surface, polygonal meshes, etc.

Implicit surfaces are computationally expensive, also they

are vulnerable to slight function changes and their shape is

difficult to control. Parametric surfaces are widely used be-

cause of their efficient sampling and intuitive shape control

mechanism. We had initially used bi-cubic NURBS (Non-

Uniform Rational B-Splines) to generate a stream bubble by

periodically cycling through the 8 control points. Although

NURBS are very flexible, allowing for unevenly spaced

knot points, closed surfaces, and additional shape control

with a set of weights over each control point, they cannot

deal with concave situations correctly. The left image in

Figure 1 shows the corresponding NURBS bubble when the

seed cell deforms to a concave volume. It is obvious that

portions of the NURBS bubble is outside the bounding vol-

ume of the cell. Therefore, we turned our attention towards

general purpose polygonal meshes, which can construct ar-

bitrary topological objects. The smoothness of the surface

can also be controlled by varying the number of polygonal

elements.

In this section, we introduce a multi-level subdivision

scheme to create a smooth, closed stream bubble surface

defined over 8 control points. The generated surface is con-

strained meaning: (1) the surface is inside the bounding vol-

ume of the cell (note that the bounding volume is tighter

than the convex hull of the 8 control points), and (2) the

surface cannot penetrate itself.

The initial stream surface defined by 8 control points is

constructed by first finding the center of each face of the

hexahedral cell. We then form 8 triangles for each face

by finding the midpoints of each edge and connecting the

4 control points and 4 edge midpoints to the face center.

Hence, the initial surface is composed of 8 x 6 triangles.

What we want to do next is to generate a smoother refined

mesh, with the same topology that approximates this origi-

nal coarse mesh.

We use a subdivision approach for mesh refinement.

It basically consists of a topological split operator and a

smoothing operator [7]. In order to maintain clean connec-

tivity, we choose uniform split operations i.e. each triangle

is equally divided into four higher-level triangles. Smooth-

ing operation is surface refining or fairing. Most techniques

use global energy functional to measure surface fairness,

such as total curvature, thin-plate energy and membrane

energy. By minimizing the global energy functional, high

quality (smooth) surface can be obtained. Because discrete

smoothness is intuitively characterized by low discrete cur-

vature, we expect that the reduction in local discrete cur-

vature by repositioning vertices will lead to global energy

reduction or minimization. This task can be fulfilled by a

commonly used smoothing operator, umbrella operator:

U(p) =

1

m

m�1

X

i=0

p

i

� p (1)

Here, p
i

is the 1-ring neighbors of vertex p on the mesh,

m is the valence or the number of p’s neighbors. The um-

brella operator can be applied to an updating rule [12] with

a damping factor �< 1:

[p

n+1

℄ = (I + �U)[p

n

℄ (2)

However, the basic umbrella operator might create unex-

pected ripples and drifting of flat surfaces. Desbrun et al.

[4] provides a curvature flow scheme to smooth the surface

by moving along the surface normal with a speed equal to

the mean curvature. But it does not suit our constrained sur-

face requirements because moving points along the normal

might cause the repositioned vertex to go outside the bound-

ing volume or flatten out the local subtle features. Consid-

ering that our requirement for fair smoothness is not strict,

we introduce a curvature-weighted umbrella operator, and

improve the updating rule by a variational damping factor

to attenuate ripples and reduce unnecessary flow.

C(p) =

P

m�1

i=0

k

i

p

i

P

m�1

i=0

k

i

� p (3)

[p

n+1

℄ = (I + � � � � � C)[p

n

℄ (4)

� =

�

+1 if p is not a concave vertex

�1 otherwise
(5)

� = N �

C

k C k

(6)

 =

�

k + d

1 + d

(7)

We use the divergence of the normals at vertex p and its

neighbor p
i

to approximate the discrete curvature k
i

(nor-

malized by �). We measure the average curvature k̄ by sum-

ming the k
i

’s and dividing by m. This value is used as a

scale factor for the amount of translation to be applied to the

vertex. Likewise, by calculating the dot product (�) of the

vertex normal N and C, we can suppress some oblique drift-

ing and totally eliminate flat surface drifting. The sign of the

� factor determines the direction of translation. Whether

Figure 1. NURBS bubble Figure 2. Subdivision bubble Figure 3. Textured freeform subdivision

�
�
�
�
�
�
�
�1

3

6

2"

2

����������
��
��
��
��
��
��

��
��
��
��
��
��
��

1

3

6

Figure 4. Top to bottom erosion Figure 5. Pre-erosion Figure 6. Post-erosion

Figure 7. 2D split Figure 8. Pre-split Figure 9. Post-split

the vertex is at a convex or concave region, the reposition-

ing operation reduces the local discrete curvature.

Our subdivision proceeds in multiple levels to accelerate

convergence. The coarser the mesh or the lower the level

(larger depth d), the larger the amount of reposition during

each iteration of discrete fairing. To prevent global shrink-

ing of the shape, we also impose some boundary conditions.

We distinguish among soft, hibernate, and hard vertices:

Soft vertices can be updated freely; Hibernate vertices or

face centers will not join the reposition until the last adap-

tive fairing step. They help keep the refinement stable; Hard

vertices or concave skeleton vertices are always fixed to en-

sure that the resulting surface is always inside the bounding

volume. Time complexity for subdivision is O(2

d

).

We currently use a pre-specified depth for subdivisions.

The generated stream bubbles at level 2 are smooth enough

for our purpose. The proposed scheme also properly keeps

the generated surface within the bounding volume even

when the bounding volume is concave. For cases when the

volume is very thin, the bubble’s size need to be readjusted

to prevent inter-penetration. Figure 2 shows a concave sub-

division bubble. Note that unlike the NURBS bubble, the

subdivision bubble is entirely within its bounding volume.

Figure 3 shows a textured freeform subdivision bubble. The

two subdivision surfaces are at depth 2, and the total tri-

angles rendered is 48 x 4

d for each bubble. Because the

subdivision level tend to be low, the rendering cost is much

cheaper than that of streamballs, which are created by im-

plicit functions [2]. Moreover, the latter needs a large quan-

tity of streamballs to produce a desired visualization effect.

3 FLOW IN SPECIAL REGIONS

The choice of integration for advecting the control points

affects the quality of the visualization. For stream bubbles,

we use an explicit fixed time step integration for two conve-

nience reasons: (1) we are simultaneously tracking 8 con-

trol points per stream bubble and they need to be synchro-

nized, and (2) while we are currently looking at steady state

flow, using explicit fixed time step integration will facilitate

extending our work to time dependent flows. Beyond these

two factors, explicit integration also facilitates the handling

of flow in special regions such as in obstructive, divergent

or spiral fields. Here, we examine two special cases.

3.1 Flows Near Obstacles

Flows near obstacles, such as wing surfaces, are usually

handled differently. For example, adaptive time step algo-

rithms are used to prevent collision of streamlines with ob-

stacles [1]. Because we are using fixed step integrations, we

need to handle the case when some of the control vertices

encounter an obstacle. In this situation, it would appear that

flow must be stopped because there is no valid data to pro-

ceed with the advection. However in reality, the flow con-

tinues along the boundary of the surface. We therefore look

at two geometric methods to deal with the case of missing

data such as when running into obstacles. We call these the

erosion and split procedures.

3.1.1 Erosion.

Erosion is a heuristic strategy based on observing flow be-

havior. When a bubble runs into an obstacle, part of the

object is dragged, perhaps through skin friction, by the ob-

stacle and the object is stretched or deformed. Therefore,

the erosion procedure allows the stream bubble to slide and

deform along an obstacle. Figure 4 shows one case of ero-

sion. Additional cases of erosion models are discussed in

[19].

In a hexahedral cell with 8 control vertices, each vertex

has 3 immediately connected neighbors. If a vertex runs

into an obstacle, it will be repositioned just outside of the

obstacle by being pulled toward the center of its available

outside neighbors. This process is iterative, so no vertex

will collapse unless all 8 vertices are inside the obstacle, in

which case, the stream bubble will be extinguished. After

erosion, integration is resumed using the new set of vertex

positions. Figure 5 and Figure 6 show an erosion example.

3.1.2 Split.

The erosion procedure allows the stream bubble to slide and

deform along an obstacle, but it cannot deal with the situa-

tion where all the vertex data are valid, but the cell or vol-

ume of the stream bubble still intersects the obstacle. For

such cases, we use the split strategy presented below.

We illustrate the splitting procedure in 2D (see Figure 7).

As the cell ABCD approaches an obstacle from the left, we

split the stream bubble into two parts. The natural split is

along the obstacle’s tangent lines of B’C’ and A’D’, which

also better follow the obstacle’s shape. The two resulting

cells would then be AB’C’D and A’BCD’.

The split is similar in 3D. Instead of splitting along tan-

gent lines, the old stream bubble would split along tangent

planes of the obstacle. Split directions (x, y or z) is weighed

for selection by measuring how well it would conserve the

old volume after splitting. Splitting a stream bubble in-

volves creating new vertices to go with each new cell. Be-

cause 8 old vertices are separated into two parts, 8 new ver-

tices need to be created. For each old vertex which currently

belongs to one part, a new vertex will be correspondingly

implanted into the other part through a process similar to

erosion. Details of this process are discussed in [19]. Fig-

ure 8 and 9 show a split example.

3.2 Flows in Divergent or Vortical Regions

Let us have a look at situations where the stream bub-

ble is stretched excessively e.g. in high shear regions, or

curved excessively e.g. near vortices. When massless parti-

cles enter a divergent or repelling area,, or when they enter

a spiraling course, nearby particles may end up quite some

distance relative to each other. In such situations, a single

stream bubble would not be able to represent the local flow

features. Therefore, we apply a break action that breaks up

a stream bubble into two pieces.

For both situations, the break procedure is straight for-

ward. We simply cut the bubble in half. We check if both

the bubble’s size and the ratio of the bubble’s longest axis

and shortest axis is over some interactively set threshold. If

so, then a break will happen along the center plane whose

normal is parallel to the longest axis. The setting of addi-

tional vertices is similar to the split procedure.

4 USAGE AND RESULTS

Massless streamlines can not tell much about local twist-

ing and stretching without depth information; similarly, flat

stream ribbons can not tell much about local volume expan-

sion and rotation. More streamlines and stream ribbons can

only clutter images. Stream tube manifests flow structure,

but it can not tell flow detail. Figure 10 shows streamlines

from four neighboring vertices, two adjoining stream rib-

bons and a stream tube of a stream bubble. On the other

side, flow features can be easily observed through expan-

sion/compression, twisting/rotation, and erosion/split/break

of color or texture mapped stream bubbles. Because stream

bubbles generalize earlier work, our system can easily add

more visual impressions by superimposing other visualiza-

tion primitives such as streamline representation from in-

dividual vertices, stream ribbon representation from pairs

of vertices, and stream polygon representation from faces

of the hexahedral cell. In addition, the system supports

static views, step-by-step animations, and continuous play-

back of the evolution of stream bubbles. Figure 11 shows a

sequence of the framed and texture mapped stream bubble

flowing in the superimposed stream tube. Combined with

static flow features, it clearly demonstrates the deformation,

contraction and rotation of the stream bubble.

When investigating a flow field, we put one or more

stream bubbles in it. The size of the stream bubbles may

be different. Smaller ones allow more detailed feature ex-

amination, while larger ones present a gross depiction of

the steady flow field. The size, shape, and position of vol-

ume seeds can be adjusted interactively. If the flow field

is highly turbulent such that the stream surface attempts to

intersect itself, the system will issue a warning and the cell

needs to be broken down into smaller pieces. Because the 8

Figure 10. Left: streamlines from four neighboring vertices, each is uniquely colored; Center: two

adjoining stream ribbons, colormapped to relative volume; Right: the stream tube, reverse color

mapped to stream volume.

Figure 11. Framed and textured stream bubble flowing in the superimposed stream tube (updown,

leftright). It clearly demonstrates flow features like deformation, contraction and rotation.

Figure 12. Three different stream bubbles flowing around the wing from the same start line on the

left. The big center stream bubble undergoes a split process. The bottom half undergoes further

splitting and erosion and produced stream bubbles that twist and rotate more radically. Other stream
bubbles are comparatively steady. Color is mapped to the velocity magnitudes of stream bubbles.

control points of each stream bubble are traced individually,

two stream bubbles may collide and penetrate through each

other. If they do, no special handling is necessary as the

two stream bubbles will simply appear to merge. Of course,

since they are really computed separately, they can just as

easily go their own ways again. Figure 12 shows a time

Figure 13. Flow in vortical field without break process. Color is mapped to the volume of stream

bubble. As the stream bubble rotates in the field, it also stretches along the Z axis (increasing to

the right), and finally occupies almost the entire field. The stream bubble incorrectly cuts across the
field and misses regions of high curvature.

Figure 14. Stream primitives for Figure 13’s flow from a different viewpoint. Left: streamlines from 8

vertices of the stream bubble; Center: two neighboring stream ribbons; Right: the stream tube. The
correct flow structure is not evident in these variations. In contrast, using stream bubbles, Figure 15

shows the flow structure clearly.

Figure 15. Flow in the vortical field with break process. Color is mapped to the velocity magnitudes of
stream bubbles. Stream bubbles keep breaking while swirling around and moving along the Zaxis

(to the right) with different speed. The color of the stream bubbles show that speed increases to the

right and away from the axis of rotation. The curvature of the flow is clearly manifested in the chain
of stream bubbles.

series of three stream bubble starting with different sizes

from the same line, moving around a stationary, gray wing.

In the beginning, the big center stream bubble undergoes a

split process. Then the top half mainly rotates and deforms,

and the bottom half slightly erodes while it flows under the

wing. Later, the bottom half undergoes several splits which

produce stream bubbles that twist and rotate more radically.

The other two stream bubbles are comparatively steady with

only some rotation and deformation. From their relative po-

sitions, it looks like there is not much speed difference, but

the stream bubbles close to the wing are in fact faster be-

cause they are slowed down a little bit by erosion. The

color of the stream bubbles are mapped to the the volume

of the stream bubbles. Other color mappings (relative vol-

ume change, velocity magnitude, etc.) and texture mapping

are also available as options.

Figure 13 shows a vortical flow field with no obstacles.

As the regular stream bubble rotates in the field, it also

stretches along the Z axis (increasing to the right), and fi-

nally occupies almost the entire field. Without a break op-

eration, a single stream bubble cannot show the local flow

structure correctly. In particular, the stream bubble cuts

across and misses regions of high curvature. Because we

are using only 8 control points per stream bubble, the stream

bubble must be broken down into smaller pieces so that the

overall curvature can be better represented. Figure 14 shows

the corresponding stream primitives from a different view-

point when the stream bubble does not break. Streamlines

are seeded from the 8 vertices of the stream bubble. From

the image, we see that four streamlines are swirling more

while others are stretching more. But we can not tell the

flow structure. Similarly in the center image, one stream

ribbon is curling around while the other neighboring stream

ribbon is extending. Additional streamlines or stream rib-

bons will not help. They are just as obscure as the stream

tube on the right. Figure 15 displays the breaking sequence.

Color is mapped to the velocity magnitude of the stream

bubble. In the beginning, the stream bubble breaks into two

stream bubbles. Then they keep breaking while swirling

around and moving along the Z-axis (to the right) with dif-

ferent speeds. Stream bubbles on the right and farther away

from the Z-axis are moving faster than those on the left and

closer to the Z-axis. From the image sequence, we can un-

derstand the flow structure much better. The curvature of

the flow is manifested in the chain of stream bubbles.

5 CONCLUSIONS

In summary, we introduced the concept of stream bubble

for flow visualization. Among its benefits are:

� ability to show flow features such as expansion and

compression, twisting and rotation;

� compact representation for a large portion of the flow

volume which allows for erosion along an obstacle

surface and splitting against an obstacle; or break in

highly divergent field or spiral field;

� since each stream bubble is tracked separately, there is

no need to explicitly merge upon contact with another

stream bubble;

� it generalizes a set of other flow visualization tech-

niques – streamline representation from individual ver-

tex, stream ribbon representation from pairs of ver-

tices, and stream polygon representation from faces of

the hexahedral cell.

There are a number of things we are currently working

on to improve stream bubbles. The list includes: investiga-

tion of the use of weights to facilitate the splitting process;

support adaptive subdivisions at high curvature regions in

order to minimize space and time requirements; extensions

to non-hexahedral seeds so as to support flow data defined

over unstructured meshes; and extension to time dependent

flow visualization.

ACKNOWLEDGMENTS

We would like to thank David Kao for discussions on

flow fields, Patrick Moran and Chris Henze for their help

with FEL, and Jennifer Dacles-Mariani and Greg Zilliac

for their data sets. We would also like to thank mem-

bers of the Advanced Visualization and Interactive Sys-

tems laboratory at UC, Santa Cruz for their suggestion and

help. This project is supported by NASA grant NCC2-

5281, LLNL Agreement No. B347879 under DOE Contract

No. W-7405-ENG-48, DARPA grant N66001-97-8900,

NSF NPACI ACI-9619020, and ONR grant N00014-96-1-

0949.

References

[1] FAST home page. science.nas.nasa.gov/Software/FAST.

[2] Manfred Brill, Hans Hagen, Hans-Christian Rodrian,

Wladimir Djatschin, and Stanislav V. Klimenko. Streamball

techniques for flow visualization. In Proceedings of Visual-

ization 94, pages 225–231. IEEE Computer Society, 1994.

[3] Brian Cabral and Leith Casey Leedom. Imaging vector fields

using line integral convolution. In Proceedings SIGGRAPH,

pages 263–270, Anaheim, CA, August 1993. ACM SIG-

GRAPH.

[4] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan

Barr. Implicit fairing of irregular meshes using diffusion and

curvature flow. In Proceedings SIGGRAPH 99, pages 317–

324. Addison Wesley, 1999.

[5] J.P.M. Hultquist. Constructing stream surfaces in steady 3D

vector fields. In Proceedings: Visualization ’92, pages 171–

178. IEEE Computer Society, 1992.

[6] D. N. Kenwright and G. D. Mallinson. A 3-d streamline

tracking algorithm using dual stream functions. In Proceed-

ings: Visualization ’92, pages 62–68. IEEE Computer Soci-

ety, 1992.

[7] Leif P. Kobbelt. Discrete fairing and variational subdivi-

sion for freeform surface design. The Visual Computer,

16(3):142–158, 2000.

[8] N. Max, B. Becker, and R. Crawfis. Flow volumes for inter-

active vector field visualization. In Proceedings of Visualiza-

tion 93, pages 19–24. IEEE, 1993.

[9] Hans-Georg Pagendarm and Frits H. Post. Studies in

comparative visualization of flow features. In G. Niel-

son, H. Hagen, and H. Muller, editors, Scientific Visualiza-

tion: Overviews, Methodologies, Techniques, pages 211–

227. IEEE Computer Society, 1997.

[10] Qin Shen, Alex Pang, and Sam Uselton. Data level compari-

son of wind tunnel and computational fluid dynamics data. In

Proceedings of Visualization 98, pages 415–418, 557, 1998.

[11] Paul Smith and John van Rosendale. Data and visualization

corridors: Report on the 1998 dvc workshop series. Tech-

nical Report CACR-164, California Institute of Technology,

September 1998.

[12] Gabriel Taubin. A signal processing approach to fair sur-

face design. In Proceedings SIGGRAPH 95, pages 351–358.

Addison Wesley, 1995.

[13] S.K. Ueng, C.Sikorski, and K.L. Ma. Efficient streamline,

streamribbon, and streamtube constructions on unstructured

grids. IEEE Trans. Visualization and Computer Graphics,

1(3):210–217, 1996.

[14] Samuel P. Uselton. exVis: Developing a wind tunnel data

visualization tool. In Proceedings of Visualization 97, pages

417–420. IEEE, 1997.

[15] J. J. van Wijk. Spot Noise: Texture synthesis for data visual-

ization. Computer Graphics, 25(4):309–318, 1991.

[16] J. J. van Wijk. Rendering surface particles. In Proceed-

ings: Visualization ’92, pages 54–61. IEEE Computer So-

ciety, 1992.

[17] J.J.Van Wijk. Implicit stream surfaces. In Proceedings: Visu-

alization ’93, pages 245–252. IEEE Computer Society, 1993.

[18] W.Schroeder, C.Volpe, and W.Lorensen. The stream poly-

gon: A technique for 3D vector field visualization. In Pro-

ceedings: Visualization ’91, pages 126–132. IEEE Computer

Society, 1991.

[19] Bing Zhang and Alex Pang. Nurbs blobs for flow

visualization. Technical Report UCSC-CRL-00-

18, UCSC Computer Science Department, 2000.

ftp.cse.ucsc.edu/pub/reinas/papers/bubble nurbs.ps.gz.

