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ABSTRACT

We propose a hybrid camera calibration based on CVP (cal-

ibration using vanishing points) and BFC (brute-force cal-

ibration) that can produce solutions of varying precision.

The application context that we are looking at requires

matching a 3D model of known dimensions to a single im-

age of the object. As such, our algorithm only requires a

single image of a cuboid object (representing the bounding

box) as input. CVP is a closed-form calibration method and

provides a quick initial estimate. However, it gives larger

errors when applied to low resolution images. BFC is an

iterative solution that progressively provides higher accu-

racy with each successive refinement. But BFC, by itself,

is very time consuming because it has to search through a

large space of possible transformations of the model. We

therefore propose to apply CVP first to obtain a coarse esti-

mate of the transformation and then apply BFC to refine the

solution. This can be viewed as either improving the CVP

accuracy or speeding up BFC. In this paper, we also pro-

vide comparisons of the accuracy of four different calibra-

tion techniques: CVP, BFC, HC (hybrid calibration), and

Tsai’s methods. The results show that our hybrid method is

the best one in general.
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1 Introduction

The application driving this work is an integrated image

versus data level comparison where 2D images are com-

pared against 3D volumetric data. This is important in a

number of situations. For example, Uselton [7] and sub-

sequently VISOR [1], described how images of air foils

with pressure sensitive paint obtained from wind tunnel

experiments need to be compared against calculations of

the pressure field over an equivalent geometrically mod-

eled foil (see Figure 1). For such applications, we typi-

cally have knowledge of a 3D model, but do not necessarily

have the camera parameters nor correspondence between

3D model points and 2D image points. Another application

is the comparison of medical data acquired using different

modalities. For example, 2D x-ray images versus a 3D vol-

umetric CT or MRI scan. Here, fiducial marks may or may

not be present.

Given such an application context, we make the fol-

Figure 1. Image data of pressure sensitive paint superimposed on 3D

wing geometry. Image courtesy of Leslie Keely, NASA.

lowing working assumptions: (1) the 3D model is a cuboid

object (representing the bounding box of the object) of

known size, (2) there is insignificant distortion in the im-

age, and (3) the aspect ratio of the camera is known. With

these assumptions, we examine a number of options of how

extrinsic camera parameters may be derived from a single

image. Because our goal is to do comparison, the accuracy

of the procedure is more important than the robustness.

BFC starts with a single image of a bounding box. A

systematic search is then performed where different projec-

tions of a 3D cuboid model are compared against the input

image. CVP uses the number and positions of vanishing

points in the image to estimate camera calibration param-

eters. Our proposed hybrid calibration approach (HC) ap-

plies CVP first to obtain a coarse estimate of the camera

transformation. It then applies BFC to iteratively improve

the accuracy of the solution. As a result, HC is more accu-

rate than CVP and much faster than BFC.

In this paper, we study four camera calibration tech-

niques: BFC, CVP, HC, and Tsai camera calibration. We

show the comparison of transformations given by these cal-

ibration techniques on our synthetic test images, and con-

clude that HC is the most accurate one among the four.

We introduce related work on camera calibration in

Section 2, and four calibration techniques in Section 3 The

results of accuracy comparisons among these techniques

are given in Section 4



2 Related Work

Shen et al. [5] described a system for performing either

image level comparison or data level comparison of wind

tunnel experiments and computational fluid dynamics cal-

culations. However, it did not support comparison between

2D images and 3D computations.

Camera calibration in this case is a bridge between

2D images and 3D volume data. The work done by

Tsai [6] clearly introduced and discussed some important

techniques of camera calibration which are based on the

pinhole model. A 3D to 2D mapping system is accurately

established by Tsai, taking into account the camera’s in-

trinsic parameters and an uncertainty scale factor s
x

. In

order to solve the equations in Tsai’s system, there must be

a sufficient number of known 3D to 2D matched points. It

is theoretically possible to compute both camera position

and orientation from the 3D points and its corresponding

2D points [4]. However, one limitation is that the origin of

the world space cannot be at the center of the field of view.

There are calibration techniques based on vanishing

points. Wei and Song [8] showed that, if PA, PB and

PC are three orthogonal edges of a cube, w
1

, w
2

and w
3

are three vectors from the perspective center to the three

vanishing points associated with PA, PB and PC, then

PA and w
1

, PB and w
2

, PC and w
3

are parallel to each

other respectively.

Caprile and Torre [2] demonstrated that the camera’s

intrinsic parameter focal length can be recovered from a

single image of a cube. Furthermore, from two images of

the cube, the camera’s extrinsic parameters, rotation and

translation from one camera to the other one, can be ob-

tained by matching the corresponding vanishing points in

the two images.

More recently, Eguillou et al. [3] introduced a new

technique, also based on vanishing points, that extended

Caprile and Torre’s work. This technique produced a

coarse 3D reconstruction from a single image by approx-

imating the model with a bounding box. We refer to this

method as the CVP method in our paper, but using line

and corner detection instead of manual selection. Eguil-

lou’s method requires manual selection of lines in the im-

age, which may affect the precision of recovered camera

parameters. In their case, this is not a crucial problem, as

their objects (bounding boxes) can be adjusted to compen-

sate for any calibration error.

3 Camera Calibration

Every 3D model has a bounding box. Calibration based on

an image of the bounding box simplifies the constraints for

CVP and BFC, and makes it easier to collect 2D and 3D

data points for Tsai calibration because of a regular struc-

ture of the model. The transformations of the bounding box

and the transformations of the camera are complementary.

3.1 Basic Concepts

Our camera is based on a pinhole model. There are two

types of camera calibration techniques: iterative solution

and closed-form solution. For the iterative solution, we fur-

ther assume that the camera is stationary while the model

is transformed. On the other hand, for the closed-form

solution, most implementations assume that the model is

stationary and the image is taken from a new camera po-

sition and orientation. BFC gives an iterative solution,

while CVP gives a closed-form solution. As such, BFC

generates a rotation matrix from a fixed camera viewpoint

for different orientations of the cuboid model. The pro-

jected model is matched against the input image to deter-

mine which model orientation has the least error (Figure 2).

In contrast, CVP obtains the rotation matrix of the cam-

era directly using the following convention: (a) vectors and

points are post-multiplied by the matrix, and (b) rotation

is done in the following order: x, then y, then z. That is,

[Rz℄[Ry℄[Rx℄~p = [R

xyz

℄~p. Rx, R
y

and R

z

are the in-

dividual rotation matrices for rotation along X , Y and Z

respectively. R
xyz

is the composite rotation matrix.
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3.2 Brute-force Calibration

Brute-force calibration is a model-driven calibration. It as-

sumes the camera is fixed and the model is transformed in

camera coordinates. There are six degrees of freedom for

the model transformation. While not necessary, significant

savings can be achieved if it is provided with an initial es-

timate of the transformation.

The search space can be reduced to [0; 360) �

[0; 180)� [0; 360), of which the first two rotation searches

are in polar coordinates and the third rotation is around an

axis pointing from the origin to one of the corners of the

object.

For translation, we use a heuristic to limit the search

space. Specifically, the ratio of the object size in the image

to the size of the image gives an indication of how far away

(Z translation) the object was moved, and subsequently also

limits the amount of X and Y translations. Suppose the

model rotation space is � and translation space is �, then,

the BFC searching space is �� �.

The precision of the solution is dependent on two pa-

rameters: r
s

and t
s

. For example, in the course of searching

through the rotation space �, an r
s

of 10 degree will search

each axis of rotation in increments of 10 degrees. Once

the rotations are determined to within 10 degrees, a sub-

sequent search of the rotation space can be initiated with
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Figure 2. Image alignment between the given image (in thick lines) and

the rendered image (in thin lines)

r

s

of 1 degree, and so on. This multi-stage approach is

more efficient than searching the entire space in 1 degree

increments. BFC provides as many levels of precision as

necessary with repeated refinements. To speed up compu-

tation, an initial rough estimate of the model transformation

can be obtained using large refinement parameters r
s

and

t

s

, which can be 10, 1, 0.1, 0.01.... We recommend using

one-tenth of the previous values in each of the subsequent

iterations.

For each possible transformation, the projected image

is compared with the given image, in terms of the projected

corners and the points found in the image. The error is

the sum of distance difference between each pair of pro-

jected corner and image corner. Because there is ambiguity

of matching the corners in the image with the correspond-

ing corners projected from model corners, BFC requires

some knowledge of the matching between projected cor-

ners and the image corners. One of the corners of the model

is picked together with its three adjacent corners projected

to the image plane as P 0

0

, P 0

1

, P 0

2

and P 0

3

.

P

0

i

= RSP

i

+ T where i = 0; 1; ::; 7 (2)

P

i

are corners of the cuboid model. P 0

i

s are the pro-
jections of the model corners on the image plane. R and
S are rotation and scaling matrices. T is a translation vec-
tor. Among the corners detected in the image, the one (P 00

0

)
with three edges extending from it and closest to the center
of the image is picked automatically. The three corners at
the other ends of the three edges emanating from P

00

0

are
P

00

1

, P 00

2

, P 00

3

. Error between the two sets of geometry is

error

srt

=

i=3

X

i=0

distan
e(P

0

i

; P

00

i

) (3)

Searching through space � � �, transformations resulting

in the minimum error are kept for further refinement.

3.3 The Hybrid Camera Calibration Model

Camera calibration using brute-force method is constrained

by the speed of refinement.

Algorithm 1 Hybrid Calibration Algorithm

Require: t

0

; r

0

are initial guesses obtained from CVP

while desired precision hasn’t been met do

for all 3D translations and rotations t
i

and r

i

do

t

i

 t

0

� t

s�1

while t

i

� (t

0

+ t

s�1

) do

r

i

 r

0

� r

s�1

while r

i

� (r

0

+ r

s�1

) do

error

srt

=

P

i=m

i=1

distan
e(P

0

i

; P

00

i

)

r

i

 r

i

+ r

s

end while

t

i

 t

i

+ t

s

end while

end for

r

0

 r

min

; r

s�1

 r

s

; r

s

 0:1r

s

;

t

0

 t

min

; t

s�1

 t

s

; t

s

 0:1t

s

;

end while

Output: t
0

and r

0

CVP has higher accuracy if the image resolution is

high since its accuracy is directly dependent on the accu-

racy of the extracted vanishing points. Therefore, its accu-

racy suffers if the image resolution is low or the vanishing

points are not obtained accurately. However, it produces

fairly good results up to a certain degree of precision and

is therefore a good candidate for producing the initial es-

timate as input for the BFC method. As the BFC gener-

ally converges to the correct transformation, it improves the

transformation from CVP to whatever precision is desired,

as described in the Hybrid Calibration algorithm. t

s

and

r

s

are the current refinement increments for translation and

rotation respectively. t
s�1

and r
s�1

are the refinement in-

crements of the previous stage, and are 10 times larger than

the current increments. P 00

i

and P

0

i

are the corners in the

given image and the corners projected from the 3D model

respectively. t

min

and r

min

are the transformations that

produce the minimum errors in the corners alignment. m is

the number of corner pairs used in the alignment compari-

son.

4 Results

We compared four camera calibration techniques: CVP,

BFC, Tsai calibration and HC using several computer gen-

erated images as test images. This provides a controlled

setting for testing the accuracy of the calibration methods

independent of the errors from extracting corner and van-

ishing points in real images where noise may be a major

factor. Furthermore, for the purposes of our application of

integrated data and image level comparison, the 3D data

sets along with any intermediate measurements need to be

rendered before they can be compared with 2D images.

It therefore makes sense to perform the comparison using

computer generated images. A subset of our results using



Image 1

R(+56.66,-41.20,-10.30)

T(+0.00,+0.00,+2.51)

Image 2

R(+56.66,-41.20,-10.30)

T(+0.00,+0.00,+6.31)

Image 3

R(56.66,-41.20,-10.30)

T(-0.50,+0.50,+2.51)

Image 4

R(+56.66,-41.20,-10.30)

T(-0.50,+0.50,-6.31)

Figure 3. Rotation and translation vectors for near and far objects without (left pair) and with (right pair) XY translations.

four images are presented, which are shown in Figure 3

together with the extrinsic camera parameters used to gen-

erate them. Image 2 and 4 are similar to image 1 and 3

respectively, but with the object farther away. Due to the

errors introduced by the corner and vanishing point detec-

tion, calibration results based on image 2 or 4 have less

accuracy than their counterparts with higher resolution ob-

jects. Image 3 and 4 are off centered versions of image 1

and 2 respectively. The former pair is used in Tsai’s cal-

ibration since it cannot handle objects centered along the

line of projection.

The accuracy check we performed proceeds by gen-

erating a perspective projection of the model first with

openGL. The transformations applied to this object are

recorded and used to measure how accurately the differ-

ent methods can estimate it. We refer to this as the target

camera parameters. Each algorithm is run twice against

two conditions. The first is with corner and/or vanishing

points extracted using image processing techniques from

the 2D images. Here, we apply an edge detector on the in-

put image. Hough transformation is then used to represent

the lines found in the image. In order to locate the corners,

each Hough line is traced. The two end points of each line

are candidates for corner points. The corner candidates are

clustered using a user-defined threshold. In the second ac-

curacy check, the 3D corner points are projected using the

exact transformations. These projected corner points (and

correspondingly, the theoretical locations of the vanishing

points) are then used as input for the calibration routines.

From these two conditions, we derive the extrinsic camera

parameters. We then use the extracted camera parameters

to reproject the 3D cuboid model, and compare the pro-

jections against those obtained by using the target camera

parameters.

In BFC the rotation search in cartesian space is simply

[0; 360)� [0; 360)� [0; 360), though it has potential solu-

tions that are not unique, which means this search space is

not optimal and it is very costly to go through for BFC.

For these reasons, in our experiments we used the rota-

tion search space [�90; 90℄ � [�90; 90℄ � [�90; 90℄. The

translation search space choosen is [0; 1℄ � [0; 1℄ � (2; 7℄.

These settings are based on initial guesses. If they are not

set appropriately, the calibration results will not be effec-

tive. This strenghens the need for CVP as an initial guess

method.

Tables 1 - 4 summarize the test results for each algo-

rithm against (a) detected points from processing the im-

ages, and (b) “perfect” points provided to the algorithms

by projecting the corners of the cuboid using the extrinsic

camera parameters in Figure 3. We use the L

2

norm to

express the errors in rotation and translation.

5 Conclusion and Future Work

In our experiments, we have found that both CVP and Tsai

calibrations give very good results, often within 1% error.

This can be further improved using our proposed hybrid ap-

proach where BFC is used to iteratively refine the solution

to some arbitrary precision.

Both BFC and CVP are as accurate as the input cor-

ners and vanishing points. When the image size or reso-

lution of the target object is small or low, the accuracy of

the corner or vanishing point detection suffers, and thereby

leads to inaccurate camera calibration. Therefore, while

CVP is theoretically accurate, in practice, it is highly sen-

sitive to the accuracy of the input vanishing points. We

also note that inaccuracies may arise from noise in the cor-

ner detection algorithms and also from the calibration algo-

rithm itself. HC focuses on improving the latter problem.

An easy improvement to the hybrid calibration is to

have an adaptive termination criteria, as opposed to some

preset precision level. This could be achieved, for example,

by checking the amount of improvement in the solution.

The results presented in this paper show that given a

3D scientific data set with information about its bounding

box, it is feasible to apply the proposed hybrid calibration

method to register 3D data sets to 2D images. This allows

us to move on to our next task of performing integrated

image and data level comparison.



Corners Images f R T Error R Error T

Detected Image 1 +1.23 R(+54.73,-40.47,-10.04) T(-0.02,-0.03,+2.53) R +3.04 T +0.04

Image 2 +1.06 R(+45.59,-35.85,-10.43) T(-0.13,-0.17,+5.64) R +12.31 T +0.70

Perfect Image 1 +1.30 R(+56.66,-41.24,-10.30) T(+0.00,+0.00,+2.51) R +0.04 T +0.00

Image 2 +1.30 R(+56.57,-41.37,-10.28) T(+0.01,+0.00,+6.21) R +0.19 T +0.10

Table 1. Calibration using vanishing points. Note that even with perfect vanishing points, CVP does not produce an exact answer. Furthermore, it also seems

to be sensitive to the size of the object in the image.

Corners Images f R T Error R Error T

Detected Image 1 +1.23 R
1

(+60.00,-40.00,-10.00) T
1

(+0.00,+0.00,+2.28)

R
2

(+56.00,-41.00,-10.00) T
2

(+0.00,+0.00,+2.48)

R
3

(+56.70,-41.40,-10.30) T
3

(+0.00,+0.00,+2.52)

R
4

(+56.64,-41.37,-10.35) T
4

(+0.00,+0.00,+2.52) R +0.18 T +0.01

Image 2 +1.06 R
1

(+60.00,-40.00,-10.00) T
1

(+0.00,+0.00,+5.15)

R
2

(+57.00,-41.00,-10.00) T
2

(+0.00,+0.00,+5.26)

R
3

(+56.00,-42.00,-10.40) T
3

(-0.01,+0.02,+5.17)

R
4

(+56.10,-42.10,-10.36) T
4

(-0.01,+0.02,+5.17) R +1.06 T +1.14

Perfect Image 1 +1.30 R
1

(+60.00,-40.00,-10.00) T
1

(+0.00,+0.00,+2.30)

R
2

(+56.00,-41.00,-10.00) T
2

(+0.00,+0.00,+2.50)

R
3

(+56.70,-41.20,-10.30) T
3

(+0.00,+0.00,+2.51)

R
4

(+56.66,-41.20,-10.30) T
4

(+0.00,+0.00,+2.51) R +0.00 T +0.00

Image 2 +1.30 R
1

(+60.00,-40.00,-10.00) T
1

(+0.00,+0.00,+6.30)

R
2

(+56.00,-41.00,-10.00) T
2

(+0.00,+0.00,+6.30)

R
3

(+56.70,-41.20,-10.30) T
3

(+0.00,+0.00,+6.30)

R
4

(+56.66,-41.20,-10.30) T
4

(+0.00,+0.00,+6.30) R +0.00 T +0.01

Table 2. Brute-force calibration. R
i

and T

i

are the rotation and translation refinement at the ith iteration. BFC produces successively better solutions after

each refinement. Using perfect corners, there is virtually no further improvement to the solution after three iterations in both images 1 and 2.

Corners Images f R T Error R Error T

Detected Image 3 +1.37 R(+58.60,-40.40,-12.51) T (-0.51,+0.49,+2.67) R +3.05 T +0.73

Image 4 +1.30 R(+50.96,-44.39,-6.77) T(-0.54,+0.56,+3.82) R +7.42 T +2.61

Perfect Image 3 +1.30 R(+56.63,-41.18,-10.29) T (-0.50,+0.50,+2.51) R +0.04 T +0.00

Image 4 +1.30 R(+56.63,-41.18,-10.29) T(-0.50,+0.50,+6.30) R +0.04 T +0.01

Table 3. Tsai calibration. Note that even with perfect corner points, it does not produce an exact answer. Furthermore, it also seems to be quite sensitive to

the accuracy of the detected corners.

Corners Images f (CVP) R (BFC) R Error R

Detected Image 1 +1.23 R(+54.73,-40.47,-10.04) R
2

(+57.00,-41.00,-11.00)

R
3

(+56.20,-41.30,-10.10)

R
4

(+56.19,-41.29,-10.03) R +0.55

Image 2 +1.06 R(+45.59,-35.85,-10.43) R
2

(+57.00,-41.00,-10.00)

R
3

(+56.00,-42.00,-10.40)

R
4

(+56.07,-42.09,-10.39) R +1.07

Corners Images f (CVP) T (BFC) T Error T

Detected Image 1 +1.23 T(-0.02,-0.03,+2.53) T
2

(+0.00,+0.00,+2.42)

T
3

(+0.00,+0.01,+2.45)

T
4

(-0.00,+0.01,+2.45) T +0.06

Image 2 +1.06 T(-0.13,-0.17,+5.64) T
2

(+0.00,+0.00,+5.20)

T
3

(-0.01,+0.02,+5.16)

T
4

(-0.01,+0.02,+5.17) T +1.14

Corners Images f (CVP) R (BFC) R Error R

Perfect Image 1 +1.30 R(+56.66,-41.24,-10.30) R
3

(+56.70,-41.20,-10.30)

R
4

(+56.66,-41.20,-10.30) R +0.00

Image 2 +1.30 R(+56.57,-41.37,-10.28) R
3

(+56.70,-41.20,-10.30)

R
4

(+56.66,-41.20,-10.30) R +0.00

Corners Images f (CVP) T (BFC) T Error T

Perfect Image 1 +1.30 T(+0.00,+0.00,+2.51) T
3

(+0.00,+0.00,+2.51)

T
4

(+0.00,+0.00,+2.51) T +0.00

Image 2 +1.30 T(+0.00,+0.00,+6.21) T
3

(+0.00,+0.00,+6.30)

T
4

(+0.00,+0.00,+6.30) T +0.01

Table 4. Hybrid calibration. With perfect corners, CVP provides very good initial estimates, so that exact answers are obtained after only two iterations.

Initial estimates are the same as colume four and five in table 1.
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