
Spray Rendering

Alex Pang

Computer and Information Sciences Board

University of California, Santa Cruz

Spray rendering is a framework for creating and

experimenting with di�erent visualization techniques.

The name spray rendering is derived from the metaphor

of using a virtual spray can to paint data sets. De-

pending on the type of `paint' in the can, data can

be highlighted in di�erent ways. Spray rendering is

not limited to this particular metaphor. In fact, other

metaphors that have also been used include a
ashlight

and a probe. Thus, when we speak of spray rendering,

we are referring to the localized nature of the visual-

ization algorithms and the manner in which the algo-

rithms are `sent' to the data sets. Several advantages

arise from looking at visualization algorithms this way.

Among these are extensibility, grid independence and

ability to handle large data sets. This paper presents

the bene�ts, conceptual design, issues and the direc-

tions of spray rendering.

Background

The goal of spray rendering is to provide a framework

for exploring di�erent visualization techniques. To

achieve this goal, spray rendering must be able to en-

capsulate existing visualization methods (e.g. march-

ing cubes [1], particle tracing [2], stream lines and sur-

faces [3], streak lines [4], etc.) and also be able to grow

and accommodate new and yet to be developed meth-

ods. The plan of attack is simple: �nd out the strategy

behind most visualization algorithms and make sure

the system is extensible.

Visualization algorithms are designed to highlight

features found in data sets in di�erent ways. They

can be viewed as having a two-step process: feature

extraction followed by an appropriate display of those

features. Features may include the presence and lo-

cation of iso-valued areas, the direction and magni-

tude of
ow �elds, and the distribution of densities, to

name a few. Once these features are extracted, they

may be visually represented using contour lines, iso-

surfaces, vector glyphs, animated particle traces and

ribbons or as accumulated density �elds as viewed by

the user. Using this simple generalization, existing vi-

sualization algorithms can be analyzed into di�erent

components of feature extraction and visual display

processes. Spray rendering builds upon this simplis-

tic view of visualization algorithms by allowing users

to encapsulate existing algorithms and to create new

visualization algorithms by combining di�erent com-

ponents together.

In recent years, one of the signi�cant development in

visualization is the availability of several commercial

products such as AVS, Iris Explorer, Khoros, and

Data Explorer that provide users with an easy-to-use

and extensible visualization environment. One of the

major appeals of these products is their simple box

wiring diagrams where users can graphically create a

network of modules that transform data accordingly

as they
ow through these networks. As such, these

environments all use the data
ow approach. When a

required module is not available, one can be built in

a modular fashion and hence these systems are easily

extensible. However, despite their popularity, these

environments do have some drawbacks. Among the

drawbacks of these systems include limited data types

and the �le oriented nature of data sets. In addition,

users also encounter system limitations when dealing

with very large data sets or dynamically changing data

sets.

This paper presents an alternative visualization

framework which preserves the ease-of-use and exten-

sible nature of existing visualization environments and

yet also addresses the limitations mentioned above. In

the next section, we present the bene�ts and concep-

tual design of spray rendering. We then discuss some

of the design issues as well as how spray rendering can

address the limitations brought up above. Finally, we

present some examples and the directions of our con-

tinuing e�ort.

Spray Rendering

What does it o�er?

Spray rendering o�ers several advantages. The list

includes: (1) grid independence. It works with regu-

larly gridded to sparse scattered data sets. (2) large

data sets. It does not require the entire data set to be

in memory since it works on a local subset at a time.

Spray rendering allows selective focus and progressive

re�nement and is ideal for exploratory visualization ap-

plications. (3) extensibility. It encompasses most vi-

sualization techniques and allows users to easily create

and explore new ones. (4) ease of use. It provides

users with the
exibility of exploring relationships in

their data sets in natural and artistic ways.

What is it?

Spray rendering is a combination of two computer

graphics techniques for modeling and animation [5, 6].

The �rst ingredient of spray rendering is particle sys-

tems [7] which was originally developed as a technique

for modeling natural phenomena. Particles are de�ned

to have initial attributes such as color, trajectory and

life span. These are then �red from some de�ned re-

gion and may spread and produce new particles of their

own. While particles systems have been used to model

�reworks and grass, they have also been used in the

context of visualization where particles are forced to in-

teract with the data set [8, 9]. By adding another ingre-

dient, one can obtain a much richer set of visual e�ects.

The second ingredient of spray rendering is behavioral

animation which was introduced by [10] to manage the

animation of a large number of actors. Examples that

Reynolds presented included
ocks of birds and schools

of �sh. Each member's behavior was dictated by its rel-

ative position in the environment and included e�ects

such object avoidance. It was also not necessary for

each member to know the whereabouts of everybody

in its group. Thus, armed with the knowledge of the

positions of a limited number of nearby friends, the

species can exhibit behaviors such as group centering,

and maintaining average speed and direction.

How does it work?

By combining particle systems and behavioral ani-

mation, particles are endowed with instructions to seek

out speci�c target features in the data set and to react

appropriately in a changing local environment. Thus,

the underlying mechanism behind spray rendering is

the speci�cation of di�erent targets and behaviors for

the particles.

To see how spray rendering can be a visualization

tool consider the following. Rendering a data set is

like painting. Given a data set, the rendering algorithm

makes the set of numbers visible by assigning appropri-

ate colors to the display that will faithfullymimicwhat

the numbers are trying to represent. A crude equiva-

lent to this process is pouring a bucket of paint over an

invisible object in order to make it visible. The invisi-

ble object corresponds to the set of numbers that one

is trying to visualize, while the rendering algorithm or

the paint is the mechanism for making the data visible.

One can also imagine using a paint brush or a can of

spray paint instead. The latter allows the user easier

control on which area of the data to visualize.

The power of this abstraction can be realized when

one considers additional functions that these paint

particles can do aside from sticking to invisible surfaces

and highlighting those surfaces with the color of the

paint. Since these particles are \intelligent" in the

sense that they have speci�c targets and corresponding

behaviors, we refer to them as smart particles or sparts.

Visualization users who use spray rendering can picture

themselves with an entire shelf of virtual spray paint

cans loaded with di�erent types of sparts that can be

applied to their data sets.

Components of spray rendering

There are two components of spray rendering: the

spray can and the sparts.

The spray can is the delivery mechanism for getting

the sparts into the data set. It is also a very intuitive

metaphor so that most people can learn how to use it

very quickly. The users can control several parameters

associated with the can such as the position, orien-

tation, and contents. In addition, the user can also

change the spart density (number of sparts released

per dose), the distribution pattern of sparts, and the

shape of the can nozzle. Aside from the typical conical

nozzle shape, the user may also specify a square nozzle,

a line (rake) nozzle, or a simple needle point nozzle.

The second component of spray rendering is the

spart. Just like ordinary particle systems, sparts keep

track of their current state information consisting of

position, age and trajectory. In addition, sparts also

update their local set of data points as they move

around the data space. More importantly, sparts may

have an optional set of targets and behaviors. Aside

from the visual behaviors of leaving a graphical prim-

itive or a glyph indicating that the target was found,

a spart may also leave behind non-visible markers.

This type of behavior may be used by di�erent sparts

to communicate with each other. Yet another prop-

erty of sparts is a position update function which tells

them where to move in the next time frame, and a

spawn/death function which tells them when to spawn

new sparts or to terminate themselves.

Figure 1: The main graphical user interface for spray rendering. Users select the type of sparts and create a

new spray can. Multiple spray cans with di�erent sparts may be created. The main graphics window shows

the user's current point of view which can be controlled by �rst selecting the camera icon on the bottom and

then using the mouse to modify the view. The active spray can is similarly manipulated by �rst selecting the

grab can icon on the bottom. To spray, the user simply selects the spray icon on the bottom and uses the

mouse to pick and drag the 3D spray can. The lower left panel contains another graphics window which shows

the view from the active can. Users may also control the can directly in this smaller window.

DESIGN ISSUES

Execution model

In coarse grained data
ow environments such as

AVS and Explorer, the modules of the visual program

network consume and produce blocks of data. These

environments are coarse grained because the block size

is the same as an instance of the data model [11]. A

problem with this approach is that when the data sets

are large and the networks are complicated, there is

a serious growth in memory requirements because of

data bu�ering and hence the performance su�ers. A

�ne grained data
ow environment has been proposed

to alleviate this problem [12].

Instead of a data
ow oriented execution model,

where data
ow through and are executed upon by

modules, our functional building blocks operate on a

limited region of the data set. Conceptually, we are

sending multiple intelligent agents into the data set to

look for features and display them.

Dealing with grids

There is no inherent requirement that the data to

be visualized must lie within some grid system. Sparts

have the notion of a local neighborhood. The range

of this neighborhood is user de�nable and the data

contained in it will change as the spart's position

changes. The nature of the neighborhood is dependent

on the nature of the data. If the data comes with an

explicit or implicit grid structure, the neighborhood

can be de�ned in terms of the computational space.

If, on the other hand, the data is unstructured, the

neighborhood can be de�ned in terms of Euclidean

distances. Furthermore, for sparse data sets, a spart

may extend its local domain to a larger region, or it

may simply not manifest itself if there is insu�cient

local data.

Dealing with data types and formats

The sparts basically look for targets and exhibit a

certain behavior depending on whether that target is

found or not. This implies that the sparts need to

know the data type that they are operating on. They

handle di�erent types according to the principle of

polymorphism. For instance, if a spart is to calculate

the maximum of a �eld in the process of a target

search, it will call the appropriate routine depending

on whether the �eld is a scalar or a vector �eld. If on

the other hand the spart expects a scalar �eld to do an

iso-surface extraction and �nds itself in a vector �eld,

it will warn the user accordingly. If new data types

need to be handled, the sparts can be modi�ed or new

sparts can be created to handle them.

Internally, sparts have their own data structures and

data formats. New data formats are handled in one of

two ways. The �rst is a separate external program

which converts the data format into something that

spray rendering can handle. This would be suitable for

handling common data formats such as NetCDF. Al-

ternatively, one can extend spray rendering to handle

the new data format by adding a new input routine.

Dealing with large and dynamic data

When called to visualize large data sets, it is often

not necessary to view the data set in its entirety.

Unless direct volume rendering is called for, most parts

of a large data set are occluded and are not visible.

Even when the entire data set needs to be viewed,

the limiting factor is often the screen resolution and

our limited ability to digest all the details at once.

Thus, one can often utilize a lower resolution rendering,

especially when this is coupled with animation.

Sparts can address the issue of interactively handling

large data sets in one of two ways. But �rst observe

that the complexity of spray rendering is dependent

on the number of active sparts and the size of a spart's

local neighborhood rather than the size of the data

set. If this neighborhood includes a substantial amount

of data, then the performance of spray rendering will

be slower. Thus, spray rendering can allow the user

to investigate very large data sets interactively by

the following methods: (a) Selective Focus. Adjust

the nozzle of the spray can so that it has a wide

area of coverage. After the initial spray, selectively

highlight regions of interest with a narrower beam of

sparts. Note that because sparts look at their local

neighborhood data points, they do not need to process

the entire data set. (b) Progressive Re�nement. Adjust

the size of a spart's neighborhood or the size of the

abstract visualization objects (AVO) [13]. Having a

larger neighborhood to work with, the spart may have

a built-in smoothing operator. Alternatively, it may

work on a small local neighborhood but produce a large

AVO (e.g. sphere instead of a point) to represent the

target that was found within that neighborhood. By

adjusting these parameters, image quality is traded o�

with interactivity.

Dynamically changing data sets such as those found

in turbulent
uid
ow experiments can also be handled

within the domain of spray rendering. Time is simply

another parameter that the sparts use when seeking

target features or deciding their next course of action.

For example,
ow paths such as those from streak lines

are determined by the particle advection at the current

time. Its next step is determined by the advection �eld

in the next time frame, and so on.

Ease of use and extensibility

In order to make the system easy to use, we provide

both a graphical user interface and a very intuitive

metaphor of spray painting the data set. The operation

of a spray can is very easy to learn and the only

limitation is the users' imagination on what a spart

can be designed to do.

There are two options to make spray rendering ex-

tensible. Either allow the users to build entire sparts

(just as users can build entire modules in AVS and

Explorer) or allow users to build sparts from compo-

nents. In the latter case, we extend our spray painting

metaphor to include mixing pigments on a palette to

get the desired color. New sparts can be created inter-

actively by simply mixing and matching di�erent spart

components together. This is easily achievable once it

is recognized that sparts can be broken down into more

elementary components. A spart is made up of four ba-

sic components. Targets are what the spart is looking

for in the data set and are functions that try to satisfy

a boolean condition. Behaviors are usually made de-

pendent on the targets and usually produce AVOs that

are passed to the renderer. The other two components

are functions that determine the new position of the

spart and functions that determine whether a spart is

to die or be spawned. Spart designers can compose

new sparts from such functions to create di�erent vi-

sualization techniques.

Intelligent queries/targets

Targets can be thought of as local feature extrac-

tion operators. They can be as simple as determining

whether a data value at a point is within a certain

range. Typically, a target function returns a boolean

value and the accompanying data representing the tar-

get features. Complex target features can be con-

structed using compound boolean relationships of sim-

pler target functions. A rich vocabulary of primitive

targets that are interoperable can lead to a very ex-

pressive facility to de�ne what a spart is to look for.

Arbitrary behaviors

Behaviors, such as visual objects, are produced when

and where target conditions are satis�ed. For instance,

if one is looking for an iso-surface, polygons making

up part of the surface will be generated only if the

condition de�ning the surface is satis�ed. However,

behaviors need not always be visual. Markers can be

deposited at those locations as well. These are non-

visual behaviors that can facilitate complex commu-

nication between sparts over time. Such complex be-

havior constitutes the behavioral animation aspects of

spray rendering and could be useful for achieving inter-

esting visualization techniques. For example, markers

can be used to combine information frommultiple data

sets.

The position update component of a spart can be

deterministic or random. It can also be dependent on

the data �eld such as particle advection in
ow �elds

or gradient descent in scalar �elds. The same thing

is true of death functions which determine when the

spart is to die. Examples include a �xed number of

time steps, going out of the data boundary, �nding the

target, etc. Even a small collection of these functions

enriches the expressiveness of the system in achieving

novel visualization techniques.

Encapsulating other algorithms

Not all visualization algorithms can be encapsulated

nicely into spray rendering. Particularly di�cult ones

are view-dependent algorithms, such as direct volume

rendering, since the viewpoint of the user and the spray

can do not have to coincide. One possible way of

incorporating them is to make views from the spray

can be part of the AVO list.

Fortunately, spray rendering can take advantage of

e�orts elsewhere by encapsulating other algorithms

within its framework. This is achieved by \localizing"

the algorithm so that it is now viewed from the perspec-

tive of a spart. This process is similar to the exercise

taken in converting sequential programs to data par-

allel programs. For instance, in the marching cubes

algorithm, all the cells in the volume are visited to

determine the presence and orientation of a surface.

To localize this algorithm, we pretend that the spart is

traveling through the volume and therefore must do the

same surface test for each cell in its path. Note that

the localized version does not require all the cells of

the volumes to be visited. Therefore there is a distinct

possibility of holes in the resulting surface (see Fig. 2).

In addition, some of the cells may be visited more than

once and thereby duplicating e�orts of previous sparts.

To guarantee complete coverage and produce the same

results as its global counterparts, one of the spray can

adjustments is to
ood the data with sparts (again see

Fig. 2).

As new data types need to be incorporated or new

targets or behaviors need to be implemented, new com-

ponents can be programmed to handle them. This is

simpler than programming the larger modules found

in data
ow visualization environments. Sparts, there-

fore, o�er a modular and extensible mechanism for

adapting to the changing needs of the user.

ANATOMY OF A SPART

This section analyzes the di�erent components of a

simple spart and shows how small variations in the

spart's de�nition can lead to di�erent visualization

e�ects.

As an illustration, we examine the iso-surface sparts.

These sparts and the marching cubes algorithm have

the same objectives and output the same polygons in

cells that they visit. However, they di�er in their

search path. While marching cubes visit each cell in

a systematic order, sparts visit only those cells that

they encounter along their initial trajectory from the

can. The iso-surface spart consists of the following four

components:

IsoThresh[Data] (Found) (Tag) (IsoVal)

IsoSurf [Data] [Found] [Tag] [IsoVal] (Obj)

RegStep [Data]

OutOfVol [Data]

In the composition above, input �elds are indicated

by [] and output �elds by (). Aside from input

�elds, functions may also have user adjustable param-

eters such as iso-values, step-sizes, etc. IsoThresh is a

simple target function that examines its current loca-

tion within the input stream Data, which is bound to

a scalar data �le, for the iso-value parameter. It out-

puts the boolean Found, an index to a lookup table Tag

that indicates the con�guration of the cell vertices, and

the iso-value parameter IsoVal. If Found is true, the

behavior function IsoSurf will generate one or more

polygon visualization objects Obj in places speci�ed

by the Tag �eld. The spart then advances a �xed step

size, according to the parameter set in the position up-

date function RegStep, along its initial direction and

checks to see if it has exited the data space using the

death function OutOfVol. These functions are repeated

until the spart is terminated after exiting the bounding

box of the data volume.

This particular composition will allow the sparts to

�nd all the relevant iso-surfaces along its path within

the data volume. A small variation in the death

function will allow the spart to �nd only the front

facing surfaces with respect to the spray can. This

can be achieved by introducing a compound death

function described by OutOfVol [Data] or [Found].

Also notice that a similar small change to the position

update function will allow traversal of all adjacent cells

along the path as opposed to �xed step sizes along the

path. This can be achieved by replacing the RegStep

function with NextCell function.

It is quite easy to obtain a di�erent visual e�ect from

the same data set. Suppose the user wishes to paint the

surface colors according to the steepness of the neigh-

boring region. We can simply substitute the behav-

ior function with, say GradientSurf [Data] [Found]

[Tag] [IsoVal] (Obj), which calculates the steep-

ness of the surface around the cell and colors the sur-

faces as a function of steepness. The rest of the spart

composition would still be the same. Yet the visual

e�ects can be quite di�erent.

OTHER METAPHORS

The spray can metaphor is natural and easily learned

by most people. We have also extended the spray can

to two other metaphors which are also quite intuitive

to use and require little deviation from the spray ren-

dering design. These are brie
y described below.

Flashlight. Instead of sparts \sticking" to data fea-

tures, we allow them to \slide" o� and disappear as the

user moves the
ashlight away from that direction and

reappear when the
ashlight is pointed there again.

Alternatively, the user can hold the
ashlight steady,

but aim it at a dynamic or \moving" data and watch

the changes go by. The same sparts used in spray cans

can be used in
ashlights. A relatively inexpensive way

of keeping track of what is currently visible from the

ashlight is with a �rst-in-�rst-out AVO queue.

Probe. Probes allow users to examine a speci�c re-

gion in the data space. As the user points the probe

at a di�erent location, features in that area are dis-

played. Thus, probes are simply spray cans operating

in
ashlight mode with the additional restriction that

only one spart is being �red at a time (e.g. Fig. 3).

SAMPLE SPARTS

Here are some common and not so common sparts

that one can easily identify with existing visualization

techniques.

Surface seeking sparts

These sparts look for surfaces in the data set (e.g.

Fig. 2). The determination of what constitutes a sur-

face is made locally by the spart. So it can �nd more

general surfaces than those present in the standard

polygonal world. For example, a surface may be rep-

resented as a trilinear patch by a spart's eight nearest

points. Or a surface may be deemed to exist based

on the density of the data points in the spart's neigh-

borhood. The behavior of the spart is not limited to

highlighting the entire surface that it hits. It may sim-

ply display the intersection point. Alternatively, the

spart can blot part of the surface with a paint spot,

or it may just bounce o� the surface in search of other

surfaces.

Flatland sparts

A common technique that scientists use in analyzing

data is to display 2D pro�les. This can be generalized

to arbitrary planar cross-sections of the data. We have

therefore designed some sparts that will travel on a

plane that is normal to the spray can's line of sight

and a �xed distance away. These sparts can resample

values from neighboring points and use pseudo-coloring

to represent the 2D �eld. Alternatively, they can also

track contours on that plane. Fig. 3 show these two in

action.

Volume penetrating sparts

These sparts may not have speci�c targets. They

may act like high energy particles bombarding the data

sets. The visual e�ects of passing these sparts through

the data set depend on their behavioral description.

Figure 2: Two iso-surfaces of a synthetic vol-

ume where the density �eld falls o� uniformly

away from the center. The outer iso-surface

shows the partially �lled in e�ect of an ex-

ploratory spray. The complete inner iso-surface

is obtained by
ooding the volume with sparts.

Since the direction of the spart's path does not have

to coincide with the viewer's gaze, one can generate

view-independent e�ects which highlight the internal

structure of the data. The dust sparts in Fig. 4 simply

color their positions according to the data values that

they encounter. If
ashlight mode was used instead of

spray mode, only those dust particles directly in the

can's cone of �re would be visible.

Flow tracking sparts

Flow tracking sparts are ideal for visualizing vector

�elds. These sparts typically do not have speci�c

targets and usually do not have an initial velocity or

trajectory. Instead, they are introduced into vector

�elds where they are in
uenced and carried around by

the surrounding neighboring forces. The phenomena

of interest are usually the
ow patterns rather than

surfaces. Therefore, these sparts manifest themselves

by leaving a trace of their path as they advance from

one state to another (e.g. Fig. 5). Flow tracking

sparts may work in pairs or groups so as to form

ow ribbons and rakes respectively. These sparts may

also be modi�ed to do streak lines in time-dependent

ows. Finally, instead of leaving leaving path traces,

animation may also be used to obtain a better idea on

relative speed magnitudes.

Figure 3: A pseudo-colored cross section and

the contours on an adjacent cross section Each

is obtained by a single
atlander spart in probe

mode. A di�erent cross section is obtained

when the user moves the probe around. Cross

sections can be constrained to primary planes

or may be unconstrained.

Figure 4: Dust particles in synthetic volume.

Bounding box and spray can are visible.

PERFORMANCE

The performance of spray rendering depends more

on the number and complexity of sparts more than the

size of the data sets. We found that the limiting factor

has been the display of the AVOs that are generated by

Figure 5: Stream lines in a simulated wind

vector �eld.

the sparts. Thus, we also allow the users to toggle the

display of AVOs from a spray can to reduce clutter and

to improve interaction. Our development and testing

of spray rendering is based on SGI platforms that range

from Indigos to the Reality Engine 2. We �nd the

display rate of about 300K shaded polygons per second

to be adequate for handling the AVOs from generated

from a couple of spray cans.

SUMMARY

Spray rendering provides a framework for applying

diverse visualization techniques in a uni�ed manner. It

is born out of a need for scientists to be able to visualize

and explore large data sets with widely varying data

structures without learning several di�erent packages.

Users can employ quick exploratory sprays or complete

data traversal with
ood �lls. Because of the proper-

ties of sparts, novel visualization e�ects can be easily

designed and tested. The interface for launching sparts

appears intuitive and encourages users to interactively

explore their data sets. The extension to
ashlight and

probe modes also appear to be quite useful.

We see great potentials in spray rendering and are

currently expanding it to handle irregular grids, to

include 3D VR interface, and to provide multi-media

collaborative visualization capabilities.

ACKNOWLEDGEMENTS

The contributions from the following are greatly ap-

preciated: Naim Alper, Je� Furman, Tom Goodman,

Elijah Saxon, Craig Wittenbrink, Peter Dommel, Ji-

ahua Wang and Kyle Smith. We would also like to

thank Dr. Teddy Holt and Dr. Paul Hirschberg for

kindly providing us with some of the data sets used in

the �gures. The comments by the reviewers are grate-

fully acknowledged and incorporated within the page

limitations of this paper. This work is funded in part

by ONR grant N00014-92-J-1807 and NSF grant CDA-

9115268.

References

[1] W.E. Lorensen and H.E. Cline. Marching cubes:

A high-resolution 3d surface construction algorithm.

Computer Graphics, 21(4):163{169, 1987.

[2] A.J.S. Hin and F.H. Post. Visualization of turbulent

ow with particles. In Visualization'93 Proceedings,

pages 46{52, 1993.

[3] J.J.vanWijk. Flow visualization with surface particles.

IEEE Computer Graphics and Applications, 13(4):18{

24, 1993.

[4] D.A. Lane. Visualization of time-dependent
ow �elds.

In Visualization'93 Proceedings, pages 32{38, 1993.

[5] A. Pang and K. Smith. Spray rendering: Visualization

with smart particles. In Visualization'93 Proceedings,

pages 283{290, 1993.

[6] A. Pang, Naim Alper, Je� Furman, and Jiahua Wang.

Design issues of spray rendering. In Compugraphics'93,

pages 58{67, 1993.

[7] W.T. Reeves. Particle systems - a technique for mod-

elling a class of fuzzy objects. Computer Graphics,

17(3):359{376, 1983.

[8] G. D. Kerlick. Moving iconic objects in scienti�c

visualization. In Proceedings: Visualization '90, pages

124 { 129. IEEE Computer Society, 1990.

[9] K. Sims. Particle animation and rendering using data

parallel computation. Computer Graphics, 24(4):405 {

413, 1990.

[10] C.W. Reynolds. Flocks, herds, and schools: A

distributed behavioral model. Computer Graphics,

21(4):25{34, 1987.

[11] C. Williams, J. Rasure, and C. Hansen. The state

of the art of visual languages for visualization. In

Visualization'92 Proceedings, pages 202{209, 1992.

[12] D. Song and E. Golin. Fine-grain visualization algo-

rithms in data
ow environments. In Visualization'93

Proceedings, pages 126{133, 1993.

[13] R.B. Haber and D.A. McNabb. Visualization idioms:

A conceptual model for scienti�c visualization systems.

In B. Shriver G. M. Nielson and L. J. Rosenblum,

editors, Visualization in Scienti�c Computing, pages

74{93. IEEE Computer Society Press, 1990.

Biography

Alex Pang is an Assistant Professor in the Computer

and Information Sciences Board at the University of

California, Santa Cruz. He obtained his BS in In-

dustrial Engineering from the University of the Philip-

pines, and received his MS and PhD in Computer Sci-

ence from UCLA in 1984 and 1990. His research inter-

ests are in computer graphics, scienti�c visualization,

collaboration software, multimedia and virtual reality

interfaces.

