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Topological Lines in 3D Tensor Fields and
Discriminant Hessian Factorization

Xiaogiang Zheng, Student Member, IEEE, Beresford N. Parlett, and Alex Pang, Senior Member, IEEE

Abstract—This paper addresses several issues related to topological analysis of 3D second order symmetric tensor fields. First, we
show that the degenerate features in such data sets form stable topological lines rather than points, as previously thought. Second, the
paper presents two different methods for extracting these features by identifying the individual points on these lines and connecting
them. Third, this paper proposes an analytical form of obtaining tangents at the degenerate points along these topological lines. The
tangents are derived from a Hessian factorization technique on the tensor discriminant and leads to a fast and stable solution.

Together, these three advances allow us to extract the backbone topological lines that form the basis for topological analysis of tensor

fields.

Index Terms—Hyperstreamlines, real symmetric tensors, degenerate tensors, tensor topology.

1 INTRODUCTION

THE main motivation and goal of this work is to develop a
simple yet powerful representation of 3D real sym-
metric tensor fields. Topology-based methods can yield
simplified yet effective representation in many visualization
fields [2], [17], [22]. The topological structures make it
simple for users to understand the underlying data fields
yet they are sensitive enough to capture important features.
Early work on using the topology-based method to
visualize tensor fields by Hesselink et al. [7], [9] lays
important background for this research project. They define
the tensor topology based on degenerate features, discuss
its nature for 2D cases in great detail, and provide useful
information for 3D cases. However, we find this early work
insufficient in studying 3D tensor topology. Not only is the
dimension of the degenerate features unknown, but it is
also unclear how to numerically extract the topological
structures. In their previous work, Hesselink et al. men-
tioned that the dimension of the degenerate features can be
points, lines, surfaces, or subvolumes. This claim is
essentially true, but it does not point out the dimension of
degenerate features in typical nondegenerate 3D tensor
data. By analogy, although the critical features in 3D vector
fields can be lines, surfaces, or even subvolumes, we know
they are mainly points in a typical nondegenerate 3D vector
data. This knowledge is the foundation of the study of
topological structure in vector field visualization. All the
subsequent study on separatrices and other topological
features is based on the extraction of critical points. On the
other hand, prior to our findings, there were no topological
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results on 3D real symmetric tensor fields indicating that
the degenerate features form lines.

During our research on 3D tensor topology, we con-
firmed that the topological structures in 3D real symmetric
tensor fields form feature lines. This can be verified by an
early theorem pointed out by Wigner and von Neumann
stating that the real symmetric degenerate matrices form a
variety of codimension two [15]. This discovery is impor-
tant in that it tells us that future studies on the topology-
based method for 3D nondegenerate real symmetric tensor
fields should be based on degenerate lines. We can capture
and preserve important features when studying the under-
lying tensor fields by looking at these extracted topological
structural lines together with their separatrix surfaces.

The basic strategy for finding these degenerate lines is to
first find the degenerate tensors on a 2D patch, i.e., on the
face of a hexahedral cell. Next, the feature lines can be
obtained by connecting the appropriate set of points.
Traditionally, the degenerate features in 3D tensor fields
are defined as tensors whose cubic discriminant is equal to
zero. Finding roots of discriminants in a stable manner
proves to be a challenging task because of their high-
orderedness and singularity. To address these shortcom-
ings, we introduce two alternative formulations to extract
3D degenerate tensors. The first formulation decomposes
the cubic discriminant into the sum of the squares of seven
cubic polynomials referred to as discriminant constraint
functions [27]. Through this decomposition, the tensors
whose discriminant equals zero are equivalent to the tensor
whose individual tensor constraint functions are all equal to
zero simultaneously. This formulation eliminates the high-
orderedness and singularity problems encountered in
existing practice and, thus, makes developing stable
numerical algorithm to extract degenerate feature lines
possible. The second formulation rewrites the degenerate
tensors using a geometric approach with four implicit
parameters and solves the singularity with a root finding
scheme (Section 5).

To ensure that all degenerate tensors are found, a cell
and its faces may be subdivided a number of times. Once
the degenerate points are found, the feature lines can be
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formed in a relatively straightforward manner by connect-
ing points along lines with minimum angular change. This
method of forming feature lines is not mathematically
satisfying. Furthermore, the subdivision process introduces
significant computational load to the extraction. Hence, in
this paper, we also propose a technique using the tangents
at the degenerate tensors to help find the topological lines
by tracing from the extracted degenerate points. The major
contribution in this paper is an efficient analytical method
for finding these tangents. It is based on a fundamental
theorem on Hessian factorization of the discriminant that
allows us to find an analytical expression for the tangent.
This approach reduces the false negatives in the number of
extracted degeneracies and uses fewer computational
resources by tracing an entire feature line from a single
extracted point. The method also accurately resolves the
connectivity problem when more than two singularities are
present in one cell and greatly improves the performance of
the extraction. Furthermore, the point connection step is
independent of the underlying grid in which the tensor is
defined. Although its derivation and reasoning are fairly
complicated, the conclusion of the technique is very
intuitive and can be generalized to real symmetric second
order tensors of any dimension.

In this paper, we describe the key steps in finding the
3D tensor topology. For each step, we show alternative
solutions. Since each solution still has the potential to
improve, we mainly focus on and discuss their properties
instead of comparing and recommending the best one.

The rest of this paper is organized as follows: Section 2
reviews some important facts used in tensor analyses,
Section 3 discusses the relevant previous work in tensor
field analyses and visualization, Section 4 shows that
3D degenerate tensors form lines in general, Section 5
discusses several strategies to extract 3D degenerate tensors
on a 2D patch, Section 6 introduces the discriminant
Hessian factorization at degenerate tensors, Section 7 goes
over methods to form feature lines from the extracted
degenerate points, and Section 8 presents results for both
synthetic and practical tensor data sets.

2 TENSOR ANALYSIS

Tensor fields, especially second-order tensor fields, are useful
in many medical, mechanical, and physical applications such
as: fluid dynamics, meteorology, molecular dynamics,
biology, geophysics, astrophysics, mechanics, material
science, and earth science. Effective tensor visualization
methods can enhance research in a wide variety of fields.
However, developing an effective algorithm can be difficult
because of the large amount of information contained in
3D tensor fields: There are nine independent components in
each tensor and six for a symmetric tensor. Users in many
research fields are especially interested in real symmetric
tensors. In some applications, the data itself is inherently
symmetric. In other cases, symmetric tensor data can be
obtained through various decomposition techniques. In this
paper, the name tensors implicitly stands for second order
symmetric tensors unless mentioned otherwise.

2.1 Degenerate Tensors and Discriminants

Any real symmetric tensor can be decomposed into three
orthogonal eigenvectors, each of which has an eigenvalue
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associated with it. The eigenvectors are labeled as major,
medium, and minor, according to the relative magnitudes
of their eigenvalues. Using any of these three eigenvector
fields, we can define hyperstreamlines [6]. In nondegene-
rate cases, the hyperstreamlines do not cross each other. The
degenerate features are thus defined as those where the
hyperstreamlines could cross each other. Hesselink et al.
show that the only degenerate features are those having at
least two equal eigenvalues [9]. Fortunately, we do not need
to conduct the eigendecomposition to find the degenerate
points. A tensor has two (or three) equal eigenvalues if and
only if its discriminant equals zero. The discriminant Dj of
a 3D tensor 1" with eigenvalues A;, Ay, and A3 and tensor
components 7Tj; is defined as:

Too Tor Too
T=|Tyn Tun To |, (1)
T T Tn
Ds(T) = (M — A2)*(h2 — A3)*(As — M)”. (2)

This can be reformulated into a form that does not require
eigendecomposition yet still explicitly determines eigenva-
lues as follows:

P =Ty + Ty + oo, (3)
_|Too T Ty The Trs T (4)
Tn Tn Ty, T Too Too |
Too To1 Toe
R=\Ty Tin To|, (5)
Toe T2 To

D3(T) = Q°P* — 4RP® — 4Q* + 18PQR — 27R?.  (6)

From (2), we can easily see that a discriminant is
1) always nonnegative and 2) equal to zero if and only if
at least two of the eigenvalues are equal. Further, it is ideal
for computation and numerical purposes because, although
it is defined on eigenvalues, we do not need to carry out an
expensive eigendecomposition. Instead, we only need to
compute (6), which is a polynomial of order six, to get the
discriminant.

The justification to define tensors with two or more equal
eigenvalues as a degenerate feature is simple. In a vector
field, the streamline integration is ambiguous at a point
with zero velocity. In a tensor field, the hyperstreamline
integration is also ambiguous at a point with two equal
eigenvalues because any linear combination of the two
eigenvectors is another eigenvector. Since the degenerate
tensors are the only places where hyperstreamlines can
cross each other, they play an important role in 3D tensor
field topological analysis, which divides the space into
smaller subspaces wherein local hyperstreamlines exhibit
similar patterns. In general, the degenerate tensors can be
interpreted in a fashion similar to the critical points in
vector field visualization.

2.2 Dimensional Analysis and Transversality

For features A defined on a D-dimensional data that form a
subspace of dimension F, codimension is defined as the
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difference between the dimension of the data and the
feature subspace: codim(A) = D — F. Codimension can also
be interpreted as the number of independent constraints
that reduces the feature dimension. Two smooth sub-
manifolds, A and B, of a smooth manifold M are said to
intersect fransversely if, for any point z € A( B, we have
tA, +tB, =tM,, where tA, denotes the tangent space of
A,. In this case, A and B intersect properly in the sense
that A B is a submanifold of M, and codim(A N B) =
codim(A) + codim(B) [1]. Transversality is a sufficient
condition for an intersection to be stable after a
perturbation. This conclusion is important in analyzing
the dimension of degenerate features in 3D tensor fields.

3 PRevious WORK

Early tensor visualization techniques relied on the tensor
ellipsoid, which is a spherical glyph deformed according to
the eigenvalues of the tensors. Variations of the basic tensor
ellipsoid include drawing eigenvalue scaled axes for the
eigenvectors, Haber’s disk, and rod glyphs [8], flow probe
[5], Kirby et al. glyphs using brush strokes [13]. More
recently, Kindlmann proposed new superquadric tensor
glyphs to visualize tensors as a combination of spherical,
planar, and linear tensors [11]. With few exceptions,
particularly for the case of 3D tensor fields, glyphs have
been used in a sparing manner because of the clutter and
occlusion they produce. Hence, they provide a discrete,
rather than a continuous view of the tensor field. To address
this problem, tensor splats were introduced by Bhalerao
and Westin [3] to provide a global continuous view of the
tensor field. Using their approach—a barycentric mapping
of linear, planar, and spherical tensors—different parts of
the tensor volume can be highlighted. An alternative
formulation, also called tensor splats, but with a different
way of displaying directional information, was presented
by Benger and Hege [21].

A hyperstreamline is basically a streamline defined over
an eigenvector field [6]. Typically, the major eigenvector field
is used for integrating the hyperstreamline, while the two
other eigenvector fields provide local information along the
length of the major hyperstreamline and are mapped to its
cross section. One of the weaknesses of hyperstreamlines is
ambiguity in places where the tensors are degenerate, i.e.,
where the eigenvalues are nearly equal. In these areas, a
sudden change in the direction of the hyperstreamline may
arise. Note that this is a common problem with integration
algorithms, e.g., fiber tracking algorithms in DT-MRI. To
address this problem, tensorlines were introduced by
Weinstein et al. [23]. Ambiguities are resolved by taking the
anisotropy of the local tensor into account as well as
information about orientation of nearby features. This allows
the tensorlines to proceed in a relatively smooth path, even in
the face of isotropic regions or noise in the data set.

Topology-based tensor visualization techniques repre-
sent the tensor fields in a simple yet powerful way. The
critical features are extracted to present a simplified version
of the underlying data field. They are defined as degenerate
tensors where the eigenvalues are identical and are the only
places where the two associated hyperstreamlines can
intersect each other. In 2D tensor fields, there is only one
way to obtain a degenerate point: The two eigenvalues must
be equal. Hesselink and Delmarcelle used this concept in 2D

and discussed the nature of the degenerate points (wedges
and trisectors) in great detail. However, it is less successful
in 3D, in part because there are two types of degenerate
points in 3D: double degenerate points, where two of the
three eigenvalues are equal, and triple, where all three
eigenvalues are identical. Furthermore, the double degen-
erate points may be distinguished by whether the minor
and medium eigenvalues are equal or the medium and
major eigenvalues are equal. This distinction is important in
some applications. Hesselink et al.’s early work does not
fully explore the properties of the double degenerate
features and, instead, focuses on the triple degenerate
tensors, whose properties are closer to their counterparts in
2D. They hint that the triple degenerate points (for the
double point load data) are connected by a locus of double
degenerate points [9]. The paper fails to point out that the
dimension of the stable double degenerate features is, in
fact, lines in most of the typical nondegenerate tensor fields.
Hence, it did not attempt to find a stable numerical method
to extract these feature lines in 3D.

Although triple degenerate features are useful, they are
extremely rare and unstable. For triple degenerate features,
there must be a scalar times an identity matrix. That means
they form a subspace, A, of dimension one, i.e., codimension
five in the 6D symmetric tensor space. Further, the 3D tensor
data form a 3D subspace, B, in the same tensor space. The
feature in the data is the intersection of these two subspaces,
codim(A N B) = codim(A) + codim(B) =5 + 3 = 8. In other
words, the dimension of the feature in a 3D data is
6 — 8 = —2. A dimension that is less than zero means the
feature is unstable. In summary, not only is it extremely
rare in real data, but its very existence will also be easily
dissolved by small errors introduced by numerical and
interpolation methods. This property dramatically limits
the usefulness of triple degenerate tensors in practical
contexts. Even in time-varying data, which has a
dimension of four, the codimension of the feature is
codim(A N B) = codim(A) + codim(B) =5+2=7, which
leads to a dimension 6 —7 = —1, and is still unstable.
Actually, in our experiments with many real time-varying
stress data sets, we have not found any triple degenerate
points. The only data set that contains triple degenerate
points is from a synthetic data set known as the Boussinesq
double point load stress tensor.

In complex 2D tensor fields, the extracted topology may
also be very complex. Tricoche and Scheuermann [20]
proposed algorithms to simplify 2D tensor topology as well
as track them in time-varying 2D tensor fields [19].

Anisotropy in tensor fields are important features in
some fields such as diffusion tensor MRI. In 3D, tensors are
classified as being linear or anisotropic where there is a
predominant eigenvalue and two other smaller eigenvalues,
planar where there are two roughly equal eigenvalues and
one smaller one, and spherical or isotropic where there are
three roughly identical eigenvalues. Kindlmann and Wein-
stein [12] use barycentric coordinates to map these proper-
ties to color and opacity in volume rendering tensor fields.
An alternative approach, called HyperLIC, was proposed
by Zheng and Pang [25] to highlight anisotropy using
textures. Linear tensors are represented by highly corre-
lated, high contrast textures, while isotropic tensors end up
as blurry textures with no preferred orientation.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 16,2024 at 16:32:07 UTC from IEEE Xplore. Restrictions apply.



398 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11,

Using the physical analogy of bending steel beams under
load, Boring and Pang [4] used deformation to visualize the
effects of tensor fields. Idealized objects such as lines,
surfaces, and subvolumes are deformed under tensor
transformations. This was further improved to provide a
globally consistent deformation based on a collection of
local deformations [24]. Calculations were carried out using
a system of springs.

Extending the idea of deformation to optics, Zheng and
Pang [26] added three alternative ways of visualizing
tensors: 1) First, light rays were traced through a tensor
volume and bent according to the local tensor properties
that they encounter. The bent rays show divergent or
convergent regions in the tensor field. 2) Second, the exit
points of the rays were collected, as in caustic ray tracing.
Different wavelengths were simulated and color separation
on the resulting caustic image provides a dense visualiza-
tion of divergence and convergence from a given viewpoint.
3) Third, the tensor field was treated as a lens that distorts
an image. Studying the distortion of a known image, such
as a checkerboard pattern, revealed compressive and tensile
regions in the tensor field.

4 DIMENSIONALITY AND TYPES OF DEGENERATE
TENSORS

4.1 Dimensionality of Tensor Features

Before we can extract the critical features from 3D tensor
fields, we need to know what kind of features we are
looking for. Algorithms to locate points, lines, surfaces, and
volumes employ very different strategies. As mentioned
earlier, we found that, for most nondegenerate 3D tensors,
the dimensionality of the critical feature is one and, hence,
they form feature lines. This can be shown using the
theorem by von Neumann and Wigner:

Theorem 4.1. Real symmetric degenerate matrices form a variety
of codimension two [15].

Since codimension can be interpreted as the number of
constraints that reduces the feature dimensionality, this
theorem can be interpreted as follows: The first constraint of
codimension two is from the definition of degenerate
tensors that two eigenvalues are equal. The second
constraint is actually a “redundancy” that further reduces
the degenerate feature dimension implicitly—when two
eigenvalues are equal, the associated eigenvectors are
indeterminate up to one degree of freedom since any
orthogonal linear combination of the eigenvectors yields
another valid pair. For real symmetric 3D tensors, we have
six degrees of freedom. Hence, it also follows from this
theorem that these tensors form a variety of dimension four.
An approach to parameterize the 3D degenerate tensors
using four parameters is introduced in [28] and will be
discussed in Section 5.

Three-dimensional real symmetric tensors have six in-
dependent components. Therefore, they form a tensor space
of dimension six. A double degenerate tensor where two
eigenvalues are equal can be uniquely specified using four
parameters. In other words, double degenerate tensors form a
subspace A of dimension four in 6D tensor space. In a typical
nondegenerate setting, tensor fields defined in a 3D space
usually form a subspace B of dimension three in the same
6D tensor space. The degenerate tensors are then the
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intersection of these two subspaces. Using transversality,
we have codim(A N B) = codim(A) + codim(B) =2 + 3 = 5.
That is, this intersection usually has a dimension one, i.e.,
double degenerate tensors form feature lines. Using the same
line of reasoning, one can show that degenerate tensors are
isolated points in most cases if the data is specified in a 2D
space.

While the main features are lines in 3D, it is still possible
to have features that are points, surfaces, or subvolumes,
but those types of features would be considered unstable
and do not persist. Those types of unstable features are also
less common in most 3D tensor fields. As such, we focus
our tensor feature extraction to extract feature lines rather
than surfaces or subvolumes. We still need to extract points
as these form the basis for the feature lines. Because of this
design criterion, features that are surfaces (such as those
found in the single point load data) or subvolumes may not
be detected as readily as feature lines. This limitation is not
insurmountable, but is, rather, based on the effective use of
limited resources in finding features that are neither as
common nor as stable.

4.2 Categorization of Degenerate Lines

There are two cases where hyperstreamlines cross each
other in double degenerate tensors. The first case (type P for
planar) is when the major and medium eigenvalues are
identical and the second case (type L for linear) is when the
medium and minor eigenvalues are identical. We define a
quantity, K, that measures the eigen difference of a tensor, T,
with eigenvalues A < XAy < Ag:

K =2\ — (A + Ag). (7)

The eigen difference K measures whether the tensor at a
point is closer to type P or type L. It is easy to show that K
returns a positive value for a type P degenerate tensor and
returns a negative value for a type L degenerate tensor.
When K equals zero, the three eigenvalue are equal and the
tensor is triple degenerate. The eigen difference is also used
to pseudocolor the feature lines (see Figs. 3, 7, and 8). Warm
colors are associated with type P and cool colors are
associated with type L degenerate points. The closer the
color is to pure green, the closer the tensor is to triple
degeneracy. Triple degenerate points are the only locations
where a type P and type L feature line can cross. This fact,
together with the color mapping for K, provides a strong
visual clue for finding triple degenerate points, even though
these are not explicitly calculated.

4.3 Overview of Extracting Degenerate Lines

Since most numerical algorithms are designed to capture
points, we develop the degenerate line extraction algorithm
in two stages: In the first stage, we locate 3D degenerate
tensors on 2D patches; in the second stage, we connect them
to form lines.

Several strategies or solutions will be introduced for each
stage. We discuss the direct discriminant minimization,
constraint functions, and geometric approach for the point
extraction stage. For the line connection stage, we introduce
minimum angle connection, feature line tracing, and the
prediction-correction algorithm based on an analytical
formula of the degenerate line tangents. This formula is
derived from the discriminant Hessian factorization on
degenerate tensors discussed in Section 6.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 16,2024 at 16:32:07 UTC from IEEE Xplore. Restrictions apply.



ZHENG ET AL.: TOPOLOGICAL LINES IN 3D TENSOR FIELDS AND DISCRIMINANT HESSIAN FACTORIZATION 399

5 EXTRACT DEGENERATE POINTS ON 2D PATCHES

5.1 Discriminants

To find the critical degenerate tensors, we need to locate
those tensors whose discriminants are zero. Although (6)
provides an elegant representation for evaluating the
discriminant without having to perform eigendecomposi-
tion, it is not very suitable for finding roots. In (6), the
discriminant of a real symmetric tensor is a polynomial of
order six. Since it is always nonnegative, the degenerate
tensor also happens to be its minimum. A good method
widely used to find the roots of an equation is to detect the
change of signs and then to recursively bisect the domain of
interest. However, since the degenerate feature is itself a
minimum, there is no change of sign at all. Relying on the
gradients is also dangerous because the gradients are
notoriously unstable unless they are very close to the
feature. Due to this high-orderedness and singularity,
directly finding the roots of a cubic discriminant in a stable
manner is very difficult. Instead, we look for another
representation of the discriminant.

5.2 Constraint Functions

In our investigation so far, we found that, while Hilbert [10]
pointed out that not all nonnegative polynomials can be
broken down into the sum of squares of polynomials, the
cubic discriminant can be written as the sum of the squares
of seven polynomials. We also learned that not only can the
discriminant of a second-order tensor of any dimension be
expressed as the sum of squares [14], but our solution to the
3D case using seven equations is optimal in the number of
equations [16]. Therefore, the definition of degenerate
tensors can also be expressed as the tensors where the
seven discriminant constraint functions all equal zero at the
same time. We use these seven cubic equations to extract
the feature lines from 3D tensor fields. The seven
discriminant constraint functions are:

fo(T) = Too(T}, = T35) + Too(Tgy, — Toy) + Tua (T, — T
+ Tll(T122 - Tgl) + T22(T020 - T121) + T22(T(?2 - T122)

fp(T) = T (2(T7, — Ti) — (Tgy + Tgy) + 2(TuToo + ToxToo
—T11Ty)) + TonTo2(2Too — Ta2 — Th1)

Fip(T) = Tos (T3, = THy) — (Tiy + Tiy) + 2(ToeTir + Too Ty
— T5oToo)) + T12To1 (2711 — Too — To2)

fp(T) = T (2T, — Tsy) = (Thy + Tiy) + 2(TooTos + T Too
—TooT11)) + ToaT12(2T — T11 — Too)

fa(T) = Tio(Tg, — Toy) + TonToo (Thy — Too)

Fo2(T) = Toa (T — T3) + Ti2Ton (Too — Too)

fa(T) = To(T7, — Tiy) + ToeTha(Too — Tir),

Ds(T) = fo(T)* + fu(T)° + fio(T)* + f3(T)°+
15f4(T)* + 15 f.5(T)* + 15f.5(T)".

A tensor is degenerate if and only if all of its seven
discriminant constraint functions are zero. We employ this
condition to extract the critical features in 3D tensor fields.
Its first advantage is that the constraint functions are only
cubic polynomials, instead of a polynomial of order of six,
which tend to oscillate more. This property leads to a more

—
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~~—

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on

(a) (b)

Fig. 1. White dots are degenerate points indicating places where all
seven constraint functions are zero. Each colored curve corresponds to
a constraint function being equal to zero. Places where multiple curves
intersect are where multiple constraint functions are satisfied simulta-
neously. The background is pseudocolored by the discriminant
functions. The data is a 2D slice of a randomly generated 3D tensor
field. (a) Slice with two degenerate points. (b) Slice with three
degenerate points.

stable and accurate numerical algorithm. In addition, the
requirement that all seven constraint functions be zero at
the same time depends on the tensor value only and not on
the gradient calculated from adjacent tensors. Hence, the
algorithm yields a more accurate result than algorithms that
rely on finding critical points where the gradients of the
discriminants equal zero. Its second advantage is that the
constraint functions can be both positive or negative, as
opposed to always being nonnegative. This property allows
us to perform a fast and inexpensive check for the existence
of features. Finally, the reformulation does not require
eigendecomposition.

Root Finding. In order to extract smooth and continuous
feature lines in 3D tensor fields, we look at each of the six
faces of every hexahedral cell. For each face, we extract the
intersection point(s) of the feature lines. These points are
then connected to generate a continuous feature line.

We know that the degenerate 3D tensors on a 2D slice are
mostly points. The only exception is if the feature line lies
exactly on the face. But, even for that case, that feature line
will intersect an adjacent noncoplanar face on the edge or,
possibly, corner vertex. To find the feature (intersection)
points that satisfy all seven constraints simultaneously, we
employ a modified version of the Newton-Raphson algo-
rithm to solve the overspecified system of equations.

Assume t_hg tensor field is T'(X). For the feature points X*,
we have CF(X") = CF,(X*)=0, for i=1,...,7, where
CF(X) is an assembly of the seven constraint functions into
one vector function. Using the modified Newton-Raphson
method and an initial guess of X,, we have the following
updating formula:

ocF oCF\ (oCE
—
X =% 5x ox ox ©)
X=X,
— —
OCF _oCF oT (10)
ox 0T oX’
— —
Note that we calculate 5§—XF from the chain rule using 9g—TF

A .
and 2% rather than from the interpolated values of CF' on
gctober 16,2024 at 16:32:07 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2. Relationship of s and V' and the degenerate tensor glyph. s is the
radius of the spherical tensor.

the grid. é)gTF is calculated from the formula of the tensor

constraints and 2% is from the interpolated tensor values.

We used both the bilinear and bicubic natural spline

interpolations.

Using the center of each cell face as the initial guess for
an intersection point, we find that this method converges to
the actual intersection point within five iterations for most
nondegenerate cases with a precision up to 107 and it
rarely misses a feature point if it exists. Additional points
are obtained by subdividing the cell face. This modified
Newton-Raphson method on constraint functions is super-
ior in speed, accuracy, and precision compared to other
methods developed directly based on the cubic discrimi-
nants. For comparison purposes, we also implemented an
algorithm based on cubic discriminant that searched for its
minimum using conjugate gradient methods. Not only is it
about 50 times slower, using any precision less than 10~°
will yield a false negative rate of over 50 percent.

5.3 Geometric Approach

Since we want to extract the degenerate tensors in a root-
finding framework, it is desirable to have a well-defined
system of equations with an equal number of equations as
there are unknowns. However, neither the discriminant nor
the constraint functions satisfy this condition. An equation
based on the discriminant is underspecified since there is
only one equation for two unknowns. An equation based on
constraint functions is overspecified because there are seven
equations with two unknowns. The formulation on con-
straint functions is numerically better than its discriminant
counterpart because an overspecified system is easier to
solve using the modified Newton-Raphson algorithm and
achieves high convergence rates and precision. In this
section, we present another extraction algorithm based on
the geometric properties of 3D tensors that meets the
desired criterion of a well-defined system.

Theorem 5.1. A tensor T is degenerate if and only if it can be
written as the sum of a spherical tensor and a linear tensor (see
Fig. 2).

The sufficiency of this theorem is easy to prove. To show
its necessity, we simply subtract the duplicate eigenvalues
from the diagonal components of the tensor. It is easy to
show that the remaining tensor has two duplicate zero
eigenvalues. In other words, the rank of the remaining
tensor is at most rank one, i.e., linear. Depending on the
sign of the other eigenvalue, a linear real symmetric tensor
can always be written as the product of a vector, its
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transpose, and an extra sign. This gives us a simple way to
write a degenerate tensor:

T=sI+V-VT, (11)

where s is a scalar, [ is a 3 x 3 identity matrix, and V is a
3 x 1 vector. An advantage of this formula is that it can
distinguish between type P and type L double degenerate
points: T' is type P with equal major and medium
eigenvalues if the minus sign holds and 7" is type L with
equal minor and medium eigenvalues if the plus sign holds.
In applications where the users are only interested in the
major hyperstreamline topology, users only need to retain
the minus sign since the major hyperstreamlines are only
degenerate at type P features. The three eigenvalues are:
M =X =sand A3 = s+ ||[V]*. One of the eigenvectors is
es =V/||[V] and the other two eigenvectors are any two
orthogonal vectors that are also perpendicular to e;. Besides
its simplicity, this equation also clearly states that all
3D degenerate tensors form a four-parameter family: (s, V).
A typical and nondegenerate 3D real symmetric tensor on a
2D patch parameterized by (z,y) is:

T(z,y)=s[+ V-V (12)

Since there are six independent components in real
symmetric tensors, this system of equations has six
equations and six unknowns. Therefore, we expect that it
has stable and isolated solutions. If we assume that the
tensor patch is obtained through bilinear interpolation, then
each equation is quadratic. To solve this formulation, we
can employ any standard numerical method to solve a well-
defined system of equations such as the Newton-Raphson
algorithm or one of its variants.

For the initial guess in the Newton-Raphson method, we
use the center of the patch, (zo,yo), in place of the position
parameters (z,y). Suppose the tensor at (z¢,yo) is Ty and
suppose that its eigenvalues are (A < Xy < )3) and its
normalized eigenvectors are (e1, ez, e3), respectively. With-
out loss of generality, we also assume that we are extracting
type P degenerate features. The algorithm for extracting
type L degenerate features is similar in form. To obtain the
initial estimates of the other four parameters (s, V), we use
the following heuristic

A2+ A
%:2;3, (13)
‘/E zws(]—)\l-el. (14)

Using sp and Vj for the initial guess, we iteratively
update the six parameters using the Newton-Raphson
method until the solution converges. Since each equation
is a simple quadratic equation, taking derivatives is trivial.
When the algorithm converges, not only do we have the
location of the degenerate feature, but we also get the
eigenvalues and eigenvectors of the tensor values at that
point from s and V. Notwithstanding its simplicity, the
disadvantage of this algorithm is also obvious—we need to
invert a 6 x 6 matrix during each iteration of the Newton-
Raphson algorithm. A less obvious disadvantage is that, in
our experiments, this algorithm shows worse numerical
stability than the algorithm built on constraint functions in
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situations where the features are very close to triple
degeneracy.

Variation on a Theme. A useful form of 3D tensor is the
deviator. It is simply a 3D tensor whose trace is zero, which
implies that the sum of the eigenvalues is also zero. We can
obtain the deviator part of any 3D tensor 1" by subtracting
one-third of its trace from its three diagonal components.
Since this is a linear operation, the zero-trace property is
preserved on a discrete grid using trilinear interpolation.

One variation of the basic geometric algorithm is to
consider only the deviator field of the original tensors.
For the case of extracting type P degenerate features, it is
easy to get:

VEHVEL V2
B Ad/d

Substituting this term back into (12) and throwing away
any redundant diagonal equation, we get a system with
five equations and five unknowns. In our experiments,
we found that this variation is almost equivalent to the
original algorithm in (12) in terms of numerical stability
and convergence speed.

s (15)

5.4 Connecting Feature Points

After the feature points on cell faces have been extracted
using any of the methods presented, the task still remains of
connecting these points to form feature lines. We note that
some cells may have more than one pair of intersection
points and, hence, more than one feature line through it. To
handle such cases, we use a multipass approach to connect
these intersection points. We only examine candidate cells
that contain intersection points on at least one of their six
faces. In the first pass, all candidate cells containing exactly
two intersection points are processed by: 1) simply
connecting those two points, 2) recording the orientation
of the line segment as tangents at the end points, and
3) marking the cell as processed. In the subsequent passes,
their unprocessed neighboring candidate cells are processed
by connecting a line segment between each pair of intersec-
tion points in such a way as to minimize the angle deviation
between the tangent recorded at the end point and the line
toward other intersection points within the cell. Each
neighboring candidate cell is marked as processed and the
procedure continues until there are no more candidate cells.

We use this iterative method to generate the tangent lines
from feature points and ultimately resolve the line connec-
tions between multiple points. In the next section, we show
how to analytically calculate the tangent at any point along
a topological feature line.

6 DiISCRIMINANT HESSIAN FACTORIZATION

6.1 Problem Statement

We are interested in finding the points where the symmetric
tensors are degenerate and computing the tangents at those
points. The tangents are useful in guiding the search for
other degenerate points along topological feature lines and
can be obtained given the degenerate tensor value and its
gradient. This section describes a formulation obtained
through Hessian factorization to produce an analytical form
of the tangents. The Hessian factorization is just a
theoretical analysis to get the formula. No factorization is
actually done during the computation stage.

_/‘

N

(a) (b)

Fig. 3. Two randomly generated 3D tensors. Warmer line colors are
closer to type P degenerate points where major and medium
hyperstreamlines intersect, while cooler line colors are closer to type L
degenerate points where medium and minor hyperstreamlines intersect.
The rest of the volume is pseudocolored by the discriminant using cool
colors for low discriminant values (closer to feature lines) and warm
transparent colors for distant values. The image is exactly the same as
the one in [27], although the degenerate points in this image are
extracted using the geometric approach instead of the constraint
functions.

A real symmetric matrix 7 of size N has K = N(N +1)/2
free components. All of the components together can be
written as a single vector of size K. This vector can be used to
obtain a K x K Hessian matrix of its discriminant. A better
formulation is to use high-order tensors, but, since most
practitioners in the visualization field are more familiar with
vectors and matrices, we will make no distinction betwegn an
N x N matrix, T, and its K dimensional vector form, 7. We
define a multiplication-sum operation on two symmetric
tensors: O = Ao B = ngj A;;jB;;. This is also the dot
product of the vector forms of the two matrices.

We mentioned in Section 4 that an early theorem by
Wigner and von Neumann points out that degenerate real
symmetric matrices form a variety of codimension two. We
derived the following lemma based on this theorem:

Lemma 6.1. The Hessians of the discriminants on degenerate
tensors has a rank of at most two.

Because the Hessian matrix, H = V4D, is positive semi-
definite at degenerate tensors, it follows from Lemma 6.1 that
we can factorize H as a product of two matrices:

H=F-F" (16)

where F'isa K x 2 matrix. Our taskis to look for an analytical
solution of F'in terms of tensor values 7" and its local gradient
VT = (T,,T,,T.). The reason we are interested in this
factorization is to study the local behavior of degenerate
features, especially the tangents along the degenerate line.
Given a tensor field 7(X) and a degenerate point X*, the
Taylor’s expansion of the discriminant D shows:

D(X* + AX)
~ D(T(X")) + VD(X") - AX + %AXT -V%AD(X*) - AX
= %AXT CHx(X")-AX
= %(VTAX)T -H(T") - (VTAX),
(17)
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where Hy = V3D is the Hessian of discriminant with
respect to X and, similarly, H = V%D is that with respect to
T. This is because D and its gradient VD both vanish at
degenerate points. Hence, the Hessians are very useful in
studying the local behavior around a degenerate point. If
the factorization F is found, we can further rewrite (17) as:

D(X* + AX) ~ %(VTAX)T CH(TY) - (VTAX)
= %(FT VT -AX)'(FT.VT-AX)  (18)
:%HFT VT - AX|P.
Equation (18) equals zero only if:
(FT.VT)-AX =0. (19)

Equation (19) results in two equations and three variables.
The tangent of a degenerate line is just its null space. If we
have the analytical form factorization of F' from the tensor
value T, then getting its tangent by solving (19) is simply a
cross product operation.

6.2 Analytical Factorization

Our solution to the factorization problem in (16) involves two
stages. In the first stage, we consider the factorization in the
local eigenvector coordinate. In the second stage, we rotate
the results from the first stage back into the physical space.
Note that the results can also be extended to discriminant
Hessian factorization on time-varying tensor data.

6.2.1 Hessian Factorization in the Eigenvector Space

Given a degenerate tensor 7% at X* and its eigenvalues
A1, A2, ... A, and their associated eigenvectors ej, es,...¢,, a
diagonal matrix, A, can be formed from the eigenvalues and
an orthonormal eigen matrix, E, can be formed by tiling all
the eigenvectors as column vectors. Without loss of
generality, we assume A\; = )y and there are no other equal
roots. If there is, both the Hessian and its factorization will
be zeros. The subblock of the matrix {7;;:7¢€ {1,2},j €
{1,2}} forms a 2 x 2 matrix and is denoted as 7.

We can study the Hessian matrix in the eigenvector
coordinate E by transforming all the tensors using:
T+ =E".T.E. In this paper, all variables in the trans-
formed coordinate have * to distinguish from their physical
space counterparts. Note that this transformation is applied
to every point in the space using the same E from 7. T is
transformed into A at X* and might not be diagonal
elsewhere. It is also obvious that this transformation is a
linear transformation and can be written as: T+ = R - T in
their vector forms. It is not difficult to prove that R is a
K x K unitary matrix such that R” - R = I for any valid E.
We now present the following theorem:

Theorem 6.2.

0*D

ST AT
ITLOT| .

=0,i>2o0rj>2o0ri >20rj >2 (20)

Theorem 6.2 states that the components outside 7.7 do
not contribute to the Hessian and therefore do not affect the
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degenerate line tangent. This theorem is the basis for the
discriminant Hessian factorization technique.
Further analyses show that:

@D, @D, @#DA)
oriz — U Taryy T arjory, - 1
#D(\)  , 9D(A) 82D(A)
arz U orner,  arhery, 0 (2
N
q=v2 I W= NIT v =%
2<i<y =3

Equation (21) shows that the Hessian of D has only four
nonzero components. We denote F' = (Fy,F,), where F)
and F; are the two column vectors of ' which can also be
expressed as two real symmetric matrices. F'* can be
obtained from (21) analytically,

0 —g¢
0 0
0 ¢ 0
q 0
Ff=| (23)
0 0

Noting that VI'AX = AT and substituting them back
into (19), we have F, o AT* = ¢(AT}; — ATy,) =0 and
Fyf o AT = ¢(2ATy,) = 0. This is the condition that keeps
AT} degenerate. Therefore, in the eigenvector coordinate
space, the line tangent at a degenerate point, which is the
direction that keeps the entire tensor T+ degenerate, is
simply the direction that keeps its submatrix T, degenerate.

6.2.2 Hessian Factorization in the Physical Space
We have shown that the Hessian factorization in the

eigenvector coordinate space is H™ = F'* - F*". Since the
transformation between the two coordinate spaces, ex-
pressed in vector form, is T+ = R - T, we get:
H=F -F'=ViD=R"-V2.,D-R
=R'-H*-R=R"-F* - F"".R
—F=R"-Fr=R'.F"
—F :R—I.F_vl'Jr’F; —Rr! ,FT2’+
=Fm=FE-F -E'RB=FE F -E"

(24)

The second equation comes from R being a unitary
matrix and R" = R~!. Equation (24) gives out the formula-
tion of the factorization /' in terms of £ and the constant
F*.However, F' is not unique since the definition of £ has
one degree of freedom due to the two equal eigenvalues. It
corresponds to the fact that if F' is a valid factorization of H,
F'- S for any 2D unitary matrix S is another valid solution.
Although the choice of S affects the value of F, it does not
change H and the null space of F” - VT.
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D

X

Fig. 4. Degenerate points in red extracted using iterative methods.
Analytical tangents are calculated for each point and shown as blue
arrows. We see that the tangents accurately match the degenerate lines
and can be used to trace the feature lines.

For 3D tensors, the result is:

F =
E%T - EgT ELr,Ely - EZ;r,EZy Ela?Elz - EZT,EQZ
Elely - EQxEQy E%y - E%y ElyElz EZyEQZ 5
Ela?Elz - EZT,EQz ElyElz - E2yE2z E%z - Egz
(25)
=
2E1:r,E2m El:r,EZy + ElyE2x El;r,EQz + EleQx
EleQy + ElyEZx 2ElyE2y ElyEQ.z + EleQy )
EyEo. + BBy,  EyyEs. + Ei Es, 2E.E>.
(26)
Ny :<F10TI,F10Ty,F10TZ >, (27)
N2:<F20TI7FQOTy7FQOTZ >, (28)
N = Nl X NQ, (29)

where N is the tangent of the degenerate line at the degenerate
tensor 1" with tensor gradient < 7,,7,,T, > . It is worth
noting that £ and E» are indeterminate and FEj is the only
determinate eigenvector. So, theoretically, it is enough to
determine N only with £3 and VT But, £5 does not show up
in (25) and (26). We verify that any valid orthogonal
combination of F; and E» will lead to the same N.

Another implication of this fact is that we will obtain
different formulas for calculating tangents at degenerate
tensors if we use different combinations of F; and Es.
Although they all lead to the same result at the degenerate
tensor, the results are different when the point is away from
degeneracy. Therefore, the choice of a proper formula does
affect the quality of our numerical algorithm.

Note that (25) to (29) are enough to determine the
tangent of a 3D degenerate line given a degenerate point
and its tensor gradient. Hessian factorization is used to
derive these equations, although it is not needed in the
calculation of tangents. Fig. 4 uses these formulas to
calculate the tangents of degenerate lines on extracted
points. It also visually verifies the correctness of these

formulas so that they can be used to further improve the
extraction algorithm.

7 TorPoLOGICAL LINES FROM DEGENERATE POINTS

A brute force degenerate point extraction and connection
algorithm has several serious drawbacks. First, it is very
inefficient. To make the extracted feature lines smoother,
e.g., to double its resolution, one must double the spatial
resolution of the data and thus make the whole computa-
tion eight times slower. Second, although algorithms built
on constraint functions and the geometric approach are
much more stable than direct discriminant minimization,
they still may not capture all the features due to the
possibility of multiple degenerate points in one cell. With
analytically computed line tangents, we can address the
connectivity problem by simply tracing the feature points
using the tangent in a similar fashion as in feature flow field
[18]. In addition, we can also capture the whole feature line
from a single extracted point. We can further improve the
efficiency by using a coarser extraction grid.

In this section, we introduce several strategies to connect
the extracted feature points into feature lines.

7.1 Improved Postprocessing

An improvement over the brute force connection algorithm
is to replace the estimated tangent with the analytically
calculated tangents. When there are more than two features
in a cell, the connectivity problem is addressed by
minimizing the angular deviation of the tangent and the
candidate features. This simple improvement eliminates the
need for the multipass algorithm.

7.2 Tracing Degenerate Lines Using Tangents

With the analytically calculated tangents, the degenerate
lines can simply be traced in the same manner as
integrating a streamline from a seed point. This is also
similar to the approach of tracing critical points over time
with feature flow fields [18]. From each point, we can guess
the next point using the tangent at the current point.
Different integration algorithms, such as Euler and fourth
order Runge-Kutta algorithms, are all applicable. During
tracing, when the feature line hits a cell face, we should
check for matches with the degenerate points on that face. If
the error falls within a predefined threshold, the feature line
will be connected back to the closest feature point. If the
error is outside the threshold and the discriminant is small
enough, then we have found a new degenerate point (and a
new feature line trace is started). This new degenerate point
will be added to the face and the cell on the opposite side of
the face will be marked as unprocessed.

It is worth noting that, although (29) is defined on
degenerate tensors, it can also be evaluated at nondegene-
rate tensors, although this may be physically meaningless.
Different choices of I, and E, will lead to algorithms that
are equivalent on degenerate tensors, but could behave
differently when the tracing is off the degenerate lines.

A drawback of this algorithm is that the tangents will be
zero at points with triple degeneracy or at crossings of two
degenerate lines of the same type. In our experiments, the
line orientation becomes fairly complicated in these cases.
Therefore, we switch back to the brute force extraction-
connection algorithm when we detect that we are near
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Fig. 5. Tracing degenerate lines using the tangents.

points with triple degeneracy or when the calculated
tangent is too small. Since this rarely happens, we can
afford to use a fairly high resolution of features without
greatly reducing the performance of the entire system.

An advantage of this simple tracing scheme is that it
gives users control over quality and efficiency. For better
quality, users simply choose smaller integration steps or
employ the fourth order Runge-Kutta method. For a quicker
result, the Euler method with relatively large integration
steps can be used, although it is not advisable. If only a
rough overview is needed, the improved postprocessing
algorithm using the analytical tangents is sufficient. Fig. 5
shows how the tracing algorithm addresses the multiple
features problem in one cell.

7.3 Extraction Grid

Since the feature lines can be traced independently of the
point extraction and the extraction algorithm is much more
expensive than the tracing step, we can use a grid with alower
resolution than the expected feature resolution during
extraction. In our implementation, we typically choose the
original grid or a grid with half the original resolution and an
integration step that is one eighth of the size of the grid
spacing. This produces high quality features with relatively
low computational expense for point extraction. A bolder
choice of low quality extraction grid is possible. This is simply
a trade-off between accuracy and efficiency.

7.4 Prediction-Correction

A drawback of simply tracing the feature as streamlines is
that integration errors are accumulated. One can choose a
better integration scheme, such as the Runge-Kutta algo-
rithm, for better quality. Still, the accuracy of the feature line
is not guaranteed. Therefore, we develop other algorithms
that use the tangent to predict the next point along the
feature line and then resort back to the iterative method to
correct the prediction.

The Newton-Raphson algorithm and its variants are
known for their superior convergence speed when the
estimate is sufficiently close to the real solution. In our
algorithm, the next point along the feature line is predicted
as the current point plus an offset defined with the
analytical tangent. Next, a slice on one of the orthogonal
planes most perpendicular to the tangent direction at the
predicted point is chosen. The algorithm then uses the
iterative method built on constraint functions or the
geometric approach to refine the result. Since the predicted
point is very close to the true feature, it usually takes only
one or two iterations to converge.

The refined point is then used as the starting point in the
next step. This algorithm is slower than the algorithms built
directly on tracing, but its advantage is that the errors are
not accumulated. Still, it is much faster than the brute force
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Fig. 6. Tracing degenerate lines with analytical tangents using
prediction-correction.

extraction-connection algorithm because it does not waste
any computational resources on cells that are too far from
the features during the extraction stage.

Fig. 6 shows how the tracing algorithm combines the
prediction and correction stages. With this method, the
errors are not accumulated.

7.5 Coherent Tangents Formula

Any formula from (29) that produces valid eigenvectors on
degenerate tensors will yield valid tangents of degenerate
lines. However, their performance may differ when tracing
points that are further away from the degenerate lines. The
first choice of E; and F; is the eigenvectors of the tensor at
that point. But, the value of £, and E, can vary dramatically
around the degenerate lines, thus introducing errors.
Another choice is to start from the outer eigenvector F3 to
consistently produce E; and E,. This algorithm produces
line tangents with more consistent behavior around
degeneracies and is much friendlier to the fourth order
Runge-Kutta algorithm, which relies heavily on the con-
tinuity assumption. However, this algorithm is not rotation
invariant and may yield a biased result.

7.6 Higher Order Degeneracy

Previous researchers have pointed out that tensor features
may have higher order degeneracy than just points and may
include lines, surfaces, and subvolumes. It can be proven that
notonly is the discriminant zero at the degenerate tensors, but
also the first order gradient of the discriminant is also equal to
zero. We hypothesize that the higher order degeneracy
happens only where the second or higher order of discrimi-
nant gradients are zeros. One can find this kind of
phenomenon only under very special conditions. For
example, we can show that, for the single point load data,
there are two types of degenerate features: first, a feature line
directly below the point load direction; second, a surface that
spreads symmetrically down from the point load. The higher
order surface degeneracy happens in this particular data set
because of a delicate equilibrium achievable only in a purely
synthetic data. This equilibrium can be easily disturbed by
noise or other forces and the feature will fall back to the more
stable form of lines. This is confirmed in the double point load
data. In the double point load data, although the discrimi-
nants on the degenerate surface are still very small, as
indicated by the almost transparent surface below each point
load in Fig. 7, the stable tensor features are lines.

In the same figure, we notice that, near the apex of these
two weak surfaces, the feature lines seem to break apart. We
think that, in the vicinity of those two points, the
appropriate tensor feature is a small feature surface. Since
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(a)

(b)

Fig. 7. Double point load data. Yellow arrows indicate point load directions, while the two magenta spheres show the location of the triple degenerate
points. Feature lines are colored by the eigen difference, while the volume is colored by the discriminant. (a) Oblique view. (b) Top view.

our current algorithm is not designed for finding such
features, it appears as an artifact. This is an area that we
plan on addressing in the future, even though such features
are generally unstable.

Another generally unstable higher order feature is
feature subvolumes. We think that, in some types of tensor
data sets, such as diffusion tensor data sets, it may be more
likely that such features will appear. The locations of such
features can be found in purely isotropic regions and, while
they may not be of too much interest, we also plan to
investigate this aspect for the sake of completeness.

8 RESULTS

We experimented with four data sets to test out our
degenerate tensor extraction algorithm. The first set is a
2D rectangular patch with symmetric 3D tensors at the four
corners that have been set randomly (see Fig. 1). The tensor
values within the patch are obtained through linear
interpolation. This synthetic data corresponds to tensors
on a face of a 3D cell. The second is a 3D cell with
symmetric 3D tensors on its eight corners which are also set
randomly (see Fig. 3). It is resampled into a higher
resolution for smoother feature lines. The third is the stress
tensor data in a semi-infinite volume with two point loads
(see Fig. 7). The fourth contains stress tensors from a
numerical simulation of a box with a compressive and a
tensile force on its top face. The forces are aligned along a
diagonal of the top face (see Fig. 8). For Figs. 3 and 7, the
colors of the volumes are mapped to the tensor discriminant
(6) with more transparent cooler colors mapped to lower
values and more opaque warmer colors mapped to higher
values. Degenerate tensors can be found in the cool blue
regions. Digital images can be accessed online at:
www.cse.ucsc.edu/research/avis/hessian.html.

Fig. 3 shows degenerate tensors in a 3D cell form feature
lines (rendered as tubes). Note that the feature lines are not
hyperstreamlines, rather they are places where the major
and medium or the medium and minor or all three

hyperstreamlines intersect each other. The color of the tubes
are mapped to the eigen difference, where the type P lines
are mapped to warmer colors and the type L lines are
mapped to cooler colors. Only the faint green is visible in the
vicinity of the tubes because the tubes are in the blue regions.
We see that complex feature lines can form even from a
simple linearly interpolated random tensor field. In Fig. 3a,
the type P and L lines swirl around each other, while, in
Fig. 3b, the two types of lines form a complicated structure.

Fig. 7 shows the double point load stress tensors. The
yellow arrows indicate the two point loads and the two
magenta spheres are the triple degenerate points. We can
see the line of double degeneracy connecting these two
stress-free points to which Hesselink et al. alluded in [9].
Other very interesting feature lines are also extracted. The
first is a vertical loop that lies directly under the double
degenerate feature line connecting the two triple degenerate
points. This feature is not present in the single point load
data. The loop feature is also stable in the sense that it
persists even as the magnitudes of the two point loads are
varied. Another visible feature is how the blue lines below
each of the point loads bifurcate and then reconnect. These
two structures and the vertical loop are connected together
by a type P feature line running between the two point
loads. Looking from the top view in Fig. 7b, we see a third
interesting feature, which is the circular feature line that
connects the two point loads and the two triple degenerate
points. We need to further investigate the physical sig-
nificance of these features that have not been seen in
previous visualizations of the data. It is worth noting that
the stress tensor is dominated by only one single load in the
vicinity of the load point. Therefore, it is locally similar to
the single point load stress tensor where the degenerate
tensor form a surface symmetrically spreading away from
the load point. Since our algorithm is designed for
extracting features lines, it produces artifacts when the
features form a surface or subvolume.

Fig. 8 shows degenerate lines in the stress tensor field
with two opposing forces on the top surface of a box. The
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(a)

(b)

Fig. 8. Degenerate lines in a box with two forces on top, one compressive and the other tensile. The forces are aligned along a diagnoal of the top
face. Feature lines are colored by the eigendifference. (a) Top view with type-P and type-L lines. (b) Front view with only type-P lines.

tensors are calculated at Gauss points in a rectilinearly
gridded field. The degenerate lines are much more complex
than the double point load tensor field. We have separated
the type-P from the type-L lines to reduce the clutter. Notice
how the short lines tend to cluster near the top surface. The
current hypothesis is that these are due to numerical
artifacts as the values of the stress tensors near the surface
are expected to be small. These small numbers may possibly
be similar due to the limited precision in the simulation.
The most important lines are those beneath the two main
loads. Similarly, one can notice some loop structures similar
to those found in Fig. 7. Further analyses are needed to
determine their significance.

9 CONCLUSION

We pointed out that the degenerate tensors form stable
feature lines in 3D real symmetric tensor field. This
knowledge lays the foundation for future research on
topology-based methods to visualize 3D tensor fields.
Finding these feature lines is divided into two independent
steps: extracting the degenerate points and forming feature
lines from these points. Aside from the classic cubic
discriminant for finding degenerate points, two new, more
efficient, and computationally accurate methods were
presented. The first is a reformulation of the discriminant
into seven constraint functions, while the second one is
based on a more intuitive geometric interpretation of
degenerate tensors. The task of finding the feature lines
given the degenerate points is also addressed and several
algorithms are presented. One of the key contributions here
is finding an analytical form for calculating tangents at
degenerate points. The tangents are used to trace the rest of
the feature lines.

We tested our algorithms on several data sets including
randomly generated tensor fields, which allowed us to
stress test our algorithms, several analytical data sets, such
as the single and double point load data sets, to validate our
results, and several computational data sets, such as the
flow past cylinder with hemispherical cap and the stress

tensor data in Fig. 8, to test its practical use. The results
reveal new information—for the case of the double point
load data set, as well as additional areas of investigation
such as studying the correlation between the interesting
patterns we saw in the real data sets and the underlying
physics. These new insights will be useful in seeding
hyperstreamlines, topology simplification, and tracking
topology in time-varying data.
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