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Abstract

Box plot is a compact representation that encodes the minimum,
maximum, mean, median, and quartile information of a distribu-
tion. In practice, a single box plot is drawn for each variable of
interest. With the advent of more accessible computing power, we
are now facing the problem of visualizing data where there is a dis-
tribution at each 2D spatial location. Simply extending the box plot
technique to distributions over 2D domain is not straightforward.
One challenge is reducing the visual clutter if a box plot is drawn
over each grid location in the 2D domain. This paper presents
and discusses two general approaches, using parametric statistics
and shape descriptors, to present 2D distribution data sets. Both
approaches provide additional insights compared to the traditional
box plot technique.

Key Words and Phrases: parametric statistics, shape descrip-
tion, uncertainty representation, probability density function. 0

1 INTRODUCTION

In the 1970’s, John Tukey had a great influence on the visualization
of data distributions by inventing the box plot [8]. The box plot
was and remains an effective means to see how a set of data or a
variable is distributed. Each box (also known as box and whisker)
represents one distribution. It is a compact representation that en-
codes minimum, maximum, mean, median, and quartile informa-
tion, summarizing what is essentially three dimensional informa-
tion in two dimensions. From their origination in the statistical lit-
erature, box plots are now used in most scientific disciplines and
are widely available in statistical software packages.

Geographical problems involve variables situated in space (2D).
Modern mapping activities sometimes involve predicting the value
of one or more variables for every spatial unit. For each spatial
unit, a complete probabilistic statement about the variable at that
location is desired. If there exists a probability distribution for each
unit in the map, there are four dimensions of information. These
are the spatial dimensions ( � and � ), the dimension of the variable
being mapped and finally the probability dimension (the probability
density is equal to or greater than 0). Can the insight used to come
up with the box plot be extended to this geographical problem to
visualize spatially varying probability distributions?

Prominent algorithms for generating probabilistic statements
about geographical phenomena are geostatistical conditional sim-
ulations [4, 6] and Monte Carlo methods with physics-based mod-
els [3]. Probabilistic statements may also be formed from sensitiv-
ity analyses on different model-input parameters or other statistical
methods that characterize uncertainty. Whatever the source, visu-
alization of 2D distribution data sets is a new challenge. Simply
extending the box plot technique to distributions over 2D domain is
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not straightforward. One challenge is reducing the visual clutter if
a box plot is drawn over each grid location in the 2D domain.

The main visualization requirements that are usually desired
from such spatial distribution data sets include: (a) a sense of what
the distributions look like over the field and (b) any special features
of the distribution data that may not be immediately obvious with-
out some feature extraction step. This paper addresses the first re-
quirement. More specifically, just as pseudo-coloring a scalar field
gives an overall impression of a scalar field, we want to provide a
similar overall impression of a 2D distribution data. This can also
be seen as an extension of box plots over a 2D spatial domain.

Existing tools such as those from image processing and geo-
graphic information systems (GIS) packages typically do not sup-
port distribution data sets. For example, GIS packages deal with
static 2D data primarily as layers that are displayed one at a time
or “stacked” one on top of another. What is needed is the ability to
process all the distributions as a single set. Furthermore, it is desir-
able to probe and query the set of distributions about the properties
of features within a region.

This paper presents a number of methods and analyses to help
visualize 2D distribution data sets. In the next section, we present
some methods that assume the distributions can be described well
by a few statistical parameters. We then describe some basic density
estimators that can be used to construct distribution data sets from
raw data. Subsequent sections explore more involved methods that
describe the shape of the distribution at each point, where a few sta-
tistical parameters fail to do the task. We present these techniques
using 2D distribution data sets from two application areas.

2 APPLICATION DATA

In this paper, we work with two distribution data sets from Earth
science, a terrestrial and an oceanographic data set. The first data
set is from a synthetic example constructed using a small region
in the Netherlands imaged by the Landsat Thematic Mapper [2].
Imagine that the biophysical variable to be mapped across this re-
gion is percent forest cover. Say there are ground-based measure-
ments of forest cover from 150 well-distributed locations through-
out this region as well as space-based measurements from Landsat
of a spectral vegetation index. This spectral vegetation index is
related to forest cover in a linear fashion but with significant unex-
plained variance. Further assume that the ground area represented
by a field measurement is equal to the area represented by one pixel.
A distribution data set was generated using this information: con-
ditional co-simulation [1, page 124] using both ground measure-
ments and the coincident satellite image. The data set consists of
101 � 101 pixels and 250 realizations. Values range from 0 to 255,
rescaled from % cover.

Our second data set is from an ocean model covering the Middle
Atlantic Bight shelfbreak which is about 100 km wide and extends
from Cape Hatteras to Canada. Both measurement data and ocean
dynamics are combined to produce a 4D field that contains a time
evolution of a 3D volume such as temperature and salinity. To dy-
namically evolve the physical uncertainty, an Error Subspace Sta-
tistical Estimation (ESSE) scheme [7] is employed. This scheme is



based on a reduction of the evolving error statistics to their domi-
nant components or subspace. To account for nonlinearities, they
are represented by an ensemble of Monte-Carlo forecasts. Hence,
numerous 4D forecasts are generated and collected into a 5D field.

For this paper, we extract the top layer of the 3D ocean volume,
and only look at the Monte-Carlo forecasts of this 2D slice for a
given instant in time. This gives us the raw data for a 2D distribution
data set. The field value is for sound speed and is derived from the
other physical field values. The dimension of this data is set 65 �
72 pixels with 80 values at each point.

3 PARAMETRIC APPROACH

The problem can be stated as follows: given a 2D distribution data
set ���������	��
� , where �����	����������� , ����������������� , and 
 is a real
number, (a) analyze the probability density function at each pixel��������� and (b) give an overall impression of the entire ���������	��
� .

A first step toward addressing this problem is to assume all the
pdfs are parametric so that all the distributions can be summarized
using a concise set of statistical parameters. For example, the nor-
mal or Gaussian distribution can be completely described by two
parameters, its mean and standard deviation, and it has a a sym-
metric bell-shape with roughly 67%, 95%, 99% of the population
within 1, 2, and 3 standard deviations. It is then relatively straight-
forward to visualize the summary statistics. Kao et al. [5] calculated
first, second and third order statistics for each distribution and visu-
alized them on different layers. In particular, standard deviation or
interquartile range can be used as uncertainty metrics. The image
plane can be colored according to any of these statistical measures
or metrics and viewed separately. Alternatively, they can be simul-
taneously displayed in the same viewing space so that the scientist
can study relations among the measures. Figure 1 shows four statis-
tics for the satellite-image derived distribution data set. The bottom
image plane is colored based on the mean, the upper plane is de-
formed by the standard deviation and colored by the interquartile
range, and the heights of the vertical bars represent the absolute
value of the difference between mean and median values (only val-
ues above 3 are drawn). For reference, the vertical bars are also
colored by the mean field shown in the image plane. Five color
bands were used for the figure; cyan denotes low values of forest
cover and red denotes high forest cover. The flexible selection of
thresholds for the vertical bars allow the detection of extremes by
different criteria, which would be application-specific. In this dis-
tribution data set, the regions with the lowest and highest values of
forest cover also appear to be the most uncertain, judging from the
“hills” in the deformed plane and the arched ridge that runs from
left to right near the top of the image.

Summary statistics included mean, median, standard deviation,
interquartile range, kurtosis and skewness. However, this ap-
proach is limited because distributions often deviate from paramet-
ric shapes. Summary statistics are still useful for describing some
but not all aspects of nonparametric distributions. Cases where
parametric summaries are less informative occur where distribu-
tions have more than one mode. For example, one can easily con-
struct a bimodal distribution that has the same mean and standard
deviation as the normal distribution.

Visualizing parametric statistics of 2D distribution data sets is
relatively easy to implement, easy to understand since the concepts
are well known and can be incorporated in most GIS packages. In
this paper, we go beyond these parametric descriptions to seek ro-
bust technique that allow the visualization of the larger class of non-
parametric distributions.

Figure 1: This figure illustrates how parametric statistics from the
2D distribution data set can be visualized in different layers. In the
figure, four parametric statistics are visualized using the satellite-
image derived distribution data set. The bottom plane is the mean
field colored from non-forest (cyan) to dense forest (red). The upper
plane is generated from three fields: the surface is deformed by the
standard deviation field and colored by the interquartile range; and
the heights of the vertical bars are from the absolute value of the
difference between the mean and median fields colored according to
the mean field on the lower plane. Only difference values exceeding
3 are displayed as bars to reduce clutter.

4 DENSITY ESTIMATION

Sometimes distribution data comes from sets of possible values that
have been generated from a model or simulation. Raw data of this
type is of the form  !����"�#�$%� , where � and � index the pixel and $ is
a sample value (or realization) in the set of possible values. Vari-
ous density estimators exist to create probability density functions
(pdfs) from these sets of possible values. For example, the his-
togram is a very common density estimator, though it does not pro-
duce a mathematically valid pdf. More accurate methods include
the naive estimator and the kernel estimator [9]. More formally,
given a set of data values &% %'����(�)�	�������+*�, density estimation
is the construction of an estimate of the function ���-
� from &% ' , .
Though the histogram is widely used, it is sometimes unsuitable
for statistical analysis because of its .0/ continuous property and
the fact that it is very sensitive to the bin width used. In this paper,
we use a different class of estimators, the kernel estimators, which
are .21 continuous functions.

We first describe the naive estimator which resembles a his-
togram and provides a basis for understanding the kernel estimator.
A naive estimator can be presented by
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*
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where 9 �-
�3�>��?	@ if A 
�A!BC� otherwise, 9 �-
�3�CD . Like traditional
histograms, naive estimators are .E/ continuous functions. They
also depend on the choice of

8
, known as the smoothing parameter,

just as histograms depend on the bin width.
Kernel estimators replace the function 9 �-
�� in the naive estima-

tor with a kernel function FG�-
�� that satisfies the following property:
HJI
K IML �-
���NO
P�Q� (2)



If the kernel function FG�-
�� is . 1 continuous, then kernel estimators
are also . 1 functions. Examples of kernel functions that satisfies
the property above include:
Epanechnikov, for A 
�A ��� �

FG�-
�� �
�
� ����; �� 
���� � � and (3)

Gaussian

FG�-
�� � �� @
	��
K� 1�� ������� (4)

Kernel estimators are also influenced by the smoothing factor
8

.
As the name implies, this parameter controls the overall smooth-
ness of the estimator. As

8
decreases, the kernel estimator becomes

more sensitive to slight variations in the distribution; as
8

increases,
contributions from more neighboring points are coalesced to form
a smoother kernel estimator. If

8
is not chosen appropriately, the

shape of the estimator can vary significantly, and even change the
modality of the pdf. e.g. from unimodal to bimodal

Rather than letting the user specify the value of
8

, a data depen-
dent

8
can be derived [9]:

8 � D � � ��� �"* ��$�
�� ��� ��� ����
 �� %*P���"* 
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� � � * K*)+, �

(5)

For our given raw data  +�������	��$ � with * , samples at each point,
we calculate either a Gaussian or an Epanechnikov kernel estimate
at each ��"� location. We use Equation (5) to determine the smooth-
ing factor
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for each kernel. This approach of selecting the smooth-

ing factor works well when we have a large number of kernel esti-
mates to compute. These kernels can be evaluated at different val-
ues of 
 . If we evaluate it at - equally spaced 
 values, then  !����"�#��$ �
is transformed into an � � � �.- volume, / , where each voxel is
a density estimate value. We refer to this 3D representation as the
density estimate volume. Standard volume visualization techniques
can then be applied to this density estimate volume.

5 VISUALIZING THE DENSITY ESTIMATE
VOLUME

The 3D density estimate volume is a discrete sampling of the pdf at
each pixel and will be the starting point for a number of visualiza-
tion options presented here. All the figures in this section use the
same data set as in Figure 1.

A simple and quick way to visualize the 2D distribution data is to
allow the user to probe and interrogate the pdf at each point. Figure
2 shows three different representations of the data at a probe po-
sition identified by the cross-hair: (1) the raw data (the lower plot
on the bottom), (2) the histogram of the pdf (the middle plot), and
(3) the kernel density estimate of the pdf (the upper plot). These
plots would change as the user moves the probe interactively. How-
ever, this approach can only depict a single pdf at a time and it may
be difficult to determine how the distribution changes from neigh-
boring pixels. This challenge can be tackled if we first treat the
pdfs computed at all pixels as a volumetric data set and then use
several existing volume visualization techniques on the density es-
timate volume.

5.1 Cutting Planes

The most straightforward method in volume visualization is to dis-
play cutting planes inside the density estimate volume / . Sup-
pose � �10 for some constant 0 , then the cutting plane correspond-
ing to / �20 �"�	�3-!� would show the pdf for pixels �20 �"� � � ������� � .

Figure 2: The image on the right shows the mean field of the 2D
distribution data set. The three plots on the left show more infor-
mation about the distribution at the cross-hair. The bottom plot is
of the raw data values making up the distribution. Each line cor-
responds to one data point, and the line lengths are proportional to
the data value. The middle plot is a histogram of those values. The
top plot is a kernel estimate of those values.

Hence, from the cutting plane, we can easily see how the distribu-
tion changes along this row of pixels. Similarly, suppose �2�54 for
some constant 4 , then the cutting plane corresponding to / ����34+��-+�
would show the pdf for pixels ��� � � ������ �64�� . Hence, the cut-
ting plane would show the variation of the distribution along this
column of pixels. The cutting plane can be positioned anywhere
in the volume. The most common choice is to position the plane
right above the slice (cut). As the slice is swept across the field, the
cutting plane would move together with the slice. Another possi-
bility which we found useful for visualizing distribution data is to
keep the cutting plane stationary on one of the faces of the density
estimate volume. The natural choice is the farthest face from the
current view that is parallel to the slice. This cutting plane appears
as a wall on the volume where density estimates above the slice are
displayed (see Figure 3). The height of the walls corresponds to the
discretization granularity of the density estimators. For this data,
there are 150 evaluations for each pdf �7- �>� � D	� .

Note that the axes of the density estimate volume are made up of
two horizontal spatial axes and a third vertical sample value axis.
Hence, one must exercise caution when interpreting cut planes of
different orientations. With vertical cut planes such as those in Fig-
ure 3, the vertical axis corresponds to different sample values. With
horizontal cut planes such as the one in Figure 5, we are at the
density for a particular sample value over the entire 2D domain.
Arbitrary cut planes are possible, but additional care must be used
in their interpretation.

5.2 Local Surface Graphs

In studying 2D distribution data, one of the tasks is to visualize
the modality of the distributions. Though cutting planes are fairly
straightforward to understand, the modality of the distributions may
not be depicted clearly. The presence of peaks in the distribution
implies the presence of local maxima and minima. Using color
mapped cutting planes, one would look for color streaks or narrow
color bands to identify these peaks. Figure 3 shows a narrow color
band that horizontally runs across the cutting planes and, at some
locations, there is a shorter and fainter streak below the main color
band. This indicates that the distribution is bimodal at these loca-
tions. Where there is only one color band, the distributions at those
locations are unimodal. Though color mapped cutting planes may



Figure 3: Cutting planes. The left wall shows the pdfs along the
slice indicated by the blue line, while the right wall shows the pdfs
along the red line. The bottom plane is the mean of the pdfs. The
height of the walls is 150 which corresponds to the number of func-
tion evaluations for each pixel. One can see that the distributions
are mostly unimodal as indicated by the narrow color band that runs
horizontally across both cutting planes. Also note that some of the
pixels have bimodal distributions e.g. the point under the cross-hair.

be useful to highlight the modality of the distribution, the technique
is sensitive to the color map used. Depending on the distribution,
some choices of color map may not be able to reveal the bimodal
part of the distributions. An alternative approach is to construct a
local surface graph so that the the modality of the distributions will
be easier to see.

The surface graph is basically a displacement map. For a given
cutting plane defined by / �20 ���	� -!� , the surface graph

� �20 ���	� -!�
can be constructed by protruding points on the cutting plane by
an amount proportional to the density estimate at that point. Let� �20 ���	� -!� � ��$�� � % � � ����
� ! � / �20 ���	�3-+�����	� -!� , where $�� � % � � ����
� !is the height scale factor of the surface graph. This is illustrated in
Figure 4. If we let

� �20 ���	� -!� � �"D ���	� -!� , then the surface graph
would be flat and it reverts back to the cutting plane defined by
/ �20 �"�	�3-+� . Overall, the surface graph offers several advantages
over the cutting plane technique: (1) it provides an accurate de-
piction of the roughness of the distribution, (2) it gives a 3D look
and feel of the distribution, and (3) it allows the changes of the
distribution across the row/column to be seen easily.

So far, the cutting planes have been lined up across a row or
column of the 2D distribution. If one applies the cutting plane on
the 3rd dimension of the density estimate volume, then we get a
view of density estimate volume for the same evaluation point F
for all pixels. Figure 5 shows a surface graph for the cutting plane
/ ����"�#� � D#� . The magnitude of the density estimates for all points at
- � � D are displayed as heights of the surface graph. Note that the
density estimate at the cross-hair is bimodal as shown in a graph of
the estimate shown in left upper plot.

5.3 pdf Isosurfaces

Both the cutting plane and the local surface graph techniques allow
the user to interrogate the density estimate volume interactively at
some specified row, column, or slice. In addition to knowing how
the distribution data changes along the selected row and column
profiles, we are also interested in seeing the global attributes of the
distribution data inside the estimate volume. These include the lo-
cations and the number of peaks. Suppose that the distribution data
is unimodal and has roughly the same mean for all pixels in the data

Figure 4: Local surface graphs. The surface graphs
� �7� � ���	�3-+�

and
� ������� � �3-+� for the same cutting planes shown in Figure 3 are

displayed. The surface graphs are colored using the density esti-
mate. Note that the peaks (shown as ridges) are now much easier
to see. The vertical curves drawn on top of the left and right sur-
face graphs are the actual plots of the density estimate at the probe
position �7� � ��� � � .

Figure 5: The cutting plane / ������	� � D#� is depicted as a surface
graph. The heights of the surface graph shows the relative mag-
nitude of the density estimates for all the points at - � � D .



set. Suppose further that for some value . , / �������	�3-���� � . and
/ ����"�#�3- , � � . where - � B - , are at the rising and descending
part of the peak. Then, the isosurface defined by / ������	� -!� � .
consists of two surface layers. The lower layer corresponds to
/ ����"�#�3- � � (the rising part of the peak) and the upper layer corre-
sponds to / �������	�3- , � (the descending part of the peak). The thick-
ness of the isosurface (i.e. the distance between the two layers)
corresponds to the width of the peak (see Figure 6).

Figure 6: The isosurface defined by / �������	� -!� � D � D�D � for the
density estimate volume. Notice that there are smaller isosurfaces
beneath the main isosurface. These locations show where the dis-
tributions are bimodal. The thickness, separation, and size of these
isosurfaces also provide an overall impression of the density esti-
mate volume.

5.4 Direct Volume Rendering

The density estimate volume is a good candidate for direct volume
rendering. The data are scalar and usually on a regular grid. If
the pdfs of neighboring points are quite similar to each other, then
there is a good chance that direct volume rendering can identify
such clustering Conversely, if the pdfs are spatially uncorrelated,
then the direct volume rendering will not be able to find significant
structures and therefore lead to such conclusions about the density
estimate volume. Using the same data set as the other techniques
presented in this section, we found that this technique allows us to
see the spatial arrangement of the peaks. The ability to experiment
with different color and opacity mappings is critical in extracting
such features. An intuitive mapping for opacity is in direct pro-
portion to the density estimate. However, a discontinuous mapping
may also prove more useful in highlighting a range of values of the
density estimate volume.

Although volume visualization techniques allow one to interro-
gate and analyze the modality of the density estimate volume, we
are also interested in the shape description of the pdfs. In the next
section, we propose to characterize a pdf by its roughness. We first
describe the roughness parameters and introduce a peak hunting al-
gorithm, then we propose two visualization methods for displaying
the roughness parameters.

6 ROUGHNESS DESCRIPTION

Given a pdf obtained from a density estimator, our goal is to char-
acterize the pdf with a concise set of shape descriptors that can

Figure 7: Basic and concatenated type A and type B peaks.

be mapped and presented visually. Towards this end, we define a
roughness parameter for a pdf. The distribution may be very bumpy,
in other words it has many local maxima. In this case we say it has a
high roughness value. If the distribution has few local maxima, the
roughness is low. We quantify roughness as the number of peaks in
the distribution.

We define two kinds of peaks, basic peaks and concatenated
peaks. A basic peak is an interval [a,b] such that density f is concave
over [a,b], but not over any larger interval [9]. A concatenated peak
includes at least two basic peaks. We further classify both kinds of
peaks into two types, type A and type B (See Figure 7). Type A
peaks have the minimum density at the start of the interval and type
B peaks have the minimum density at the end of the interval. If the
start and end of the interval have the same density, then the peaks
are classified as type A. We propose the following procedure for
finding significant peaks in a distribution: First, identify the basic
peaks in the distribution. Next, we classify and combine these basic
peaks into larger peaks. Finally, we count and record the locations
and heights of these large peaks.

The concatenation rules between the two types of peaks proceed
as follows,

�6 �* �6�O
 � * ��
 � �
� � � �3� �

(6)

�  %* � ��
 � *(��
 � �
� ��� � �

� �
if the start of A

�
the end of B� otherwise

(7)

�  %* �6��
 � *(�O
 � ��� ��� � ��� (8)

The concatenate(B, A) produces no new peaks. These operations
apply to both basic and concatenated peaks. The peaks to be con-
catenated must be adjacent to each other.

The height of a peak is defined as the distance between the local
maxima and the higher of the left and right minima. We look at
the magnitude of the height to determine if a peak is significant or
not. First, we determine the maximum height among all the basic
peaks in the pdf. This is used as a point of reference for testing
the significance of a peak. Basic peaks are concatenated until no
more concatenation can take place. Then the heights of all the re-
sulting peaks are compared to the reference height. If the height of
a peak is more than a percentage of the reference height, the thresh-
old, then it is a significant peak. The percentage is introduced as a
user specified threshold and can range from 0 to 1. The number of
significant peaks is then used as a measure for the roughness of the
distribution at the pixel.

7 VISUALIZING ROUGHNESS

We use the data set from ocean modeling to illustrate how the
roughness parameter of the distribution data can be visualized.



Algorithm: Peak Hunting Algorithm

Find all the basic peaks ��� 1 , ��� � ,...,��� 4 , n is the number of basic peaks
for All pairs of consecutive peaks (both basic and concatenated) do

if they are both above the threshold then
do not concatenate them

else
if they are both type A peaks then

merge them into a concatenated peak of type A
end if
if the first one is type A and the second one is type B then

merge them into a concatenated peak as defined in Equation 7
end if
if they are both type B peaks then

merge them into a concatenated peak of type B
end if

end if
end for

First, we convert the ocean data set into a density estimate vol-
ume using an Epanechnikov kernel estimator with data dependent
smoothing parameter

8
and evaluated at 300 points. The resulting

density estimate volume is 65 � 72 � 300. The number, location,
height and width of the peaks are obtained by applying the peak
hunting algorithm to the density estimate volumes.

We propose two visualization methods for the roughness param-
eters. First, we quantify the roughness as simply the number of
peaks �6 $ *�
�'�� � .

� ��������� � �  $ * 
�'�� � (9)

where
� �����"��� is the roughness at pixel �������� . Each pixel ��������� is

colored by
� ��������� . �	��
�

and
�	� ' 4 are the maximum and min-

imum of the roughness among all pixels. The color assigned to
pixel ��������� is linearly interpolated based on the color map shown in
(Figure 8).

(a)
(b)

Figure 8: Roughness parameter using Epanechnikov kernel estima-
tor with data-dependent smoothing factors. The number of peaks
(in this case ranging from 1 to 5) are colored using distinct colors
as indicated by the color map. We immediately note that most of
the pdfs are unimodal except for those above the shelfbreak where
there is more mixing and variability in the physical variables. The
pdf for the pixel under the cross-hair is shown on the right. This pdf
is counted as 2 peaks because the height of the small peak off the
leftmost peak is below the threshold value of 36% of the maximum
height among all the basic peaks.

The number of peaks alone is not a precise representation of
the pdf’s roughness. There are other factors that account for the
shape description. For instance, given two pixels P and Q, both

with one peak. The peak in the the first pdf may be narrow and tall
while the peak in the second pdf may be wide and short. Both will
however be assigned the same color using the visualization method
described above. Therefore, we introduce a second visualization
method which employs multiple parameters to show the roughness.
Besides the number of peaks, we also show locations, heights and
widths of the peaks.

The left and right ends of a peak give the location of the peak
within a pdf. The height of a peak is the distance from that peak
to the higher of the left and right ends of that peak. The interval
between the two ends of a peak is the width of the peak. We com-
bine this information using a line glyph representation to show the
roughness of the density estimate volume. This is illustrated in Fig-
ure 9.

If the glyphs of all the pixels are shown together, it would be
heavily clustered. Therefore, we separate the glyphs into different
frames, each of which shows the line glyphs of pixels with the same
number of peaks. In Figure 9 (a)-(e) we show the glyph visualiza-
tion for pixels with one to five peaks respectively, and (f) is for all
the pixels. From this figure, we can make the following observa-
tions:

1. The bluish line glyphs that are significantly longer e.g. in
frames (a), (b) and (f), lie above pixels that are over the shelf-
break. The wider peaks (and multiple peaks) also implies
higher standard deviation. This is consistent with the amount
of variability expected in those regions.

2. Excluding those pixels above the shelfbreak region, we can
observed from frames (a) or (f) that majority of the peaks are
of similar widths and across the same locations on the pdf.

3. In general, the lines of shorter length have redder color, and
longer lines have bluer color. The integral of any pdf is always
one. Therefore, among the pixels with the same number of
peaks, the taller peaks are narrower. This can be seen in the
far edge of frames (a) and (f).

8 CONCLUSION

We have presented a number of methods that give an overall im-
pression of 2D distribution data sets. We go beyond histograms for
constructing such data sets by employing a kernel density estimator
with a data-dependent smoothing parameter and representing the
resulting data as a volume. The representation has allowed a more
complete description of pdfs on a grid using reliable visualization
techniques such as iso-surface and volume rendering. In addition,
we have implemented nonparametric summaries of the pdfs that
will be helpful for multimodal data.

There are a number of improvements that we are working on.
The peak hunting algorithm can still be improved. Towards this
end, we have looked at identifying significant peaks in the fre-
quency domain using Fourier transforms. However, finding the ap-
propriate frequencies to band limit the signal automatically across
different pdfs is not immediately obvious. A more fundamental
challenge is to define an algebra or a set of operations on distribu-
tions that will provide us a more formal method for carrying out
comparisons of distribution fields and feature extractions from dis-
tribution fields. Finally, we plan to extend our work to time varying
distributions and to higher dimensionality.
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Figure 9: Glyph visualization of roughness. Each pixel has a one or
more line glyphs showing the location and width of each peak. The
lines are color coded by the height of the peak using the continuous
color map below each frame. The bottom plane is similar to Figure
8 and is colored by the discrete color map on the bottom. The white
areas on the bottom plane corresponds to pixels with line glyphs
being drawn above it. Frames (a) to (e) show those pixels with 1 to
5 peaks in their pdf respectively. Frame (f) shows all the detected
peaks in one image. We can make the following observations from
these images. Even in the busy frame (a), we can see that majority
of the pdfs are unimodal, and that most of them (the reddish ones)
have peaks with similar heights and locations, and a smaller per-
centage (the greenish ones) have peaks which are flatter and wider.
Frames (b) to (e) illustrates that fewer and fewer points have mul-
tiple peaks in their pdfs, and that those peaks are distributed over a
wider set of sample values, and by necessity relatively flatter.


