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Good visualizations are designed to answer a particular
question or the needs of a particular task. They are created
as comprehensively as possible taking into account numer-
ous factors such as the application domain, established con-
ventions in the community, nature of the question or task,
technical constraints such as interactivity or large data sets,
presentation concerns such as visual clutter and complexity,
and the quality of the data. Care must also be taken to en-
sure that any artifacts are not inadvertently introduced into
the visualization. This paper provides an overview of cur-
rent visualization practices and techniques that incorporate
data uncertainty in the presentations. Emphasis is placed
on geospatial data sets. The paper also describes some of
the challenges and research directions in uncertainty visual-
ization research.

1 INTRODUCTION

“Presenting data without error rate is misleading”. This is a
quote from the OJ Simpson defense team regarding the pre-
sentation of DNA evidence without valid error rate statistics.
Taken more generally, this practice is a prevalent shortcom-
ing in the scientific and information visualization commu-
nities where data are visualized without any indication of
their associated uncertainties. While it is widely acknowl-
edged that incorporating auxiliary information about data,
i.e. data quality or uncertainty, is important, the relative
amount of work in this area is small. On the other hand,
developments by the geographic, cartographic, and GIS com-
munities in this regard is much more concerted. Some of the
early efforts were spear headed by the participating mem-
bers of the National Center for Geographic Information and
Analysis (NCGIA) initiatives [5, 13], where different meth-
ods of displaying and animating data with uncertainty were
proposed. An excellent summary of this body of work can
be found in [32]. Combining these works with those from
the information and scientific visualization communities, a
typology for uncertainty visualization was presented which
tries to map data, uncertainty, and tasks with the appro-
priate visual presentation [40]. Specifically, the typology for
uncertainty visualization would give the user some guidance
about the visual representations for the different types of
uncertainty.

There are some key differences in the approaches between
the first (geographers, cartographers) and the second (in-
formation and scientific visualization researchers). On one
hand, the first group focuses on identifying and character-
izing the type, nature, source, and characteristics of uncer-
tainty; as well as map based uncertainty visualizations. On
the other hand, the second group focus on the task of visu-
ally mapping the different facets of uncertainty, and extend-
ing the techniques to higher dimensional data sets as well.
Clearly, we need to bridge this gap in order to provide an
end-to-end solution to the users.

As prefaced in the abstract, good visualization need to
target the results to the needs of the users. This means that

not only do we need to identify who the users are, we also
need to identify the particular task they’re trying to do with
the given data at that particular moment. Thus, the same
data set can be presented in a number of ways — perhaps
at various levels of detail, emphasizing or de-emphasizing
different regions and features, and employing different visu-
alization techniques to best present the message. However,
there are also occasions were the users’ goals are not known.
In such situations, it is not uncommon to see visualization
systems that try to provide interactive exploration of the
data sets, or a flexible framework for specifying and em-
phasizing different aspects of the data set. Frequently, the
tradeoff for having a flexible system is that the users need to
specify more parameters before they can get their visualiza-
tions. Likewise, interactivity usually comes at a cost, both
in terms of increased computational resources, but also in
the quality of the renderings (e.g. tradeoff in quality versus
speed [30]). Hence, the exploratory process needs to be fol-
lowed by a refinement stage where feature extraction may be
encoded as the users get a better grasp and can better define
what the important features are, and the visualizations and
user interfaces are streamlined so that the desired visualiza-
tions can be obtained with minimal effort. The description
above is also reflective of the multidisciplinary nature of the
visualization researcher in combining engineering, science,
and art. Engineering in that the visualizations are problem
driven with users trying to understand or look for features in
their data sets and the visualization researchers specifying
the best practice approach. Science in that the visualization
researcher also need to draw upon various established fields
such as perceptual and cognitive psychology, mathematical
and physical analyses, etc. Visualization is also an art in
that the results need to be tailored to the particular task,
needs, and occasion.

What we just described is true whether uncertainty is
taken into account or not. Uncertainty certainly does not
simplify matters. It adds to the computational task of han-
dling and presenting them, but also to the cognitive task of
the users to understand them. This paper focuses on visu-
alizing uncertainty in data sets, particularly those found in
geospatial applications.

2 FROM CONCEPTS TO REPRESENTATIONS

Uncertainty is a multi-faceted concept and has include such
concepts as imprecision, imperfect knowledge, inaccuracy,
inconsistency, missing information, noise, ambiguity, lack of
reliability, etc. Its many definitions are quite rich and reflect
different properties of uncertainty, but at the same time pro-
vide no clear consensus or universally preferred meaning [34].
This has resulted in different ways of quantifying uncertainty
[24], and included such measures as statistical variations or
spread, minimum-maximum range values, data quality or
reliability, likelihood and probabilistic estimates, etc. Like-
wise, numerical simulations involving uncertainties [25] and
propagation and reasoning in the presence of uncertainty



[35] provide alternative means of manipulating the different
flavors of uncertainty.

In this section, we quickly review the concepts of uncer-
tainty, how they are represented numerically, and how we
can go from there towards visualizing them. Note that there
are much more comprehensive papers that describe the dif-
ferent concepts and facets of uncertainty such as those by
Klir and Wierman [24] and Thomson et al. [40]. It is not
the purpose of this paper to expand on those different con-
cepts, but rather to focus on how the different concepts of
uncertainty are ultimately represented numerically. The nu-
merical representation is an important step in the visualiza-
tion process as ultimately, these numerical representations
need to be mapped to visual parameters.

In a typical visualization pipeline, we see a data acqui-
sition stage where data are collected from measurements,
field observations, and numerical models; these data then
undergo a transformation stage where measurements may
undergo unit conversions, new variables are derived from
available ones, data may be refined or summarized, or fea-
tures may be extracted from them; the results of the data
transformation stage are then fed to the actual visualization
step where the derived quantities are finally mapped to vi-
sual parameters. This pipeline is illustrated in Figure 1. We
note that uncertainty can be introduced at any stage in the
pipeline, including the final stage where the user may also
misinterpret, or misuse the resulting visualization.
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Figure 1: This visualization pipeline shows the introduction of uncer-
tainty (U) from models and measurements, uncertainty from trans-
formation processes, and uncertainty from the visualization process
itself.

Uncertainty in acquisition:

Data are collected through observations and measure-
ments as well as numerical simulations. In both cases, un-
certainty can be introduced in various forms such as mis-
calibration or drifts in instruments, bias, noisy or missing
data, and over simplification of mathematical models. These
can be characterized as statistical variations [9]. With in-
struments, there is an experimental variability whether the
measurements are taken by a machine or by a scientist. The
more times the measurement is taken, the more confident
the measurement. But there will be a statistical variation
in these measurements. In numerical modeling, the model
and its parameters have been decided by a domain special-
ist, and are inherently a simplification (e.g. linearization of a
nonlinear system) of the system being modeled. Aside from
model simplification and sensitivity of these models to in-
put parameters, numerical calculations performed on these
models also introduce errors due to the choice of integration
algorithms and the limited precision of the computing ma-
chinery. Likewise, there is variability in human observations

both in terms of difference in perception among individuals
and also to slight differences when asked to perform a task
repeatedly.

Uncertainty in transformation:

Often times, raw data are not rendered directly but are
first subjected to further transformations with or without
the knowledge of the person doing the visualization task.
These data transformation operations may be as simple as
conversion from one unit of measure to another, or may
involve some algorithm to fuse one or more types of data
together to derive a new data type. Data transformation
operations may occur as early as the data acquisition stage
or later in the visualization stage. Likewise, data may be
rescaled, resampled, quantized, etc. either prior to, or as
part of, the visualization stage. The key point is that these
transformations alter the data from its original form, and
have the potential of introducing some form of systematic
uncertainty.

Uncertainty in visualization:

What is also interesting is that uncertainty is also intro-
duced in the visualization stage itself. For instance, in global
illumination of 3D scenes, radiosity algorithms use approx-
imations for calculating form factors. Similarly, there are
different approaches to direct volume rendering of 3D data
sets [23] resulting in discernable differences in renderings of
the same data set.

Uncertainty introduced in the visualization process is not
limited to radiosity and volume rendering, but are also
present in more routine operations. For example, the use of
interpolation is quite prevalent in taking slices through data
sets, in contouring, as well as isosurface algorithms [28, 43].
Similarly, in flow visualization methods, different integra-
tion methods, step sizes, orders, and seeding strategies lead
to noticeably different flow visualization results. Effects of
uncertainty are more pronounced in the vicinity of or on crit-
ical points in the flow field. These differences may at times
result in drastically different flow visualizations.

Animation allows visualization to include an additional
parameter, usually time. Again, there are several oppor-
tunities for uncertainty to be introduced. The process of
in-betweening to fill in frames between key frames is anal-
ogous to surface interpolation, and while there is no single
preferred method, there are many methods available, and all
of them will result in some slight variations.

Hopefully, this short list of potential pitfalls illustrates
the numerous ways in which uncertainty can be introduced
into the visualization pipeline. Users should also be wary
of blindly using visualization methods without fully under-
standing the limitations and assumptions of each method.

Comparing these different sources of uncertainty with the
different concepts of uncertainty, one can also see that while
most of the uncertainty may be introduced upstream during
the data acquisition stage (e.g. missing information, noise,
imprecision, inaccuracy), other forms for uncertainties may
also be introduced in later stages of the pipeline (e.g. incon-
sistency in data handling procedures, lack of precision in nu-
merical calculations, smoothing, fuzziness or vagueness from
filtering operations, loss of information from sub-sampling,
etc.).

What is critical for the uncertainty visualization task is to
know how the uncertainty is numerically represented. That
is, is uncertainty represented by a single scalar value that
represents e.g. standard deviation or data quality? Or is it



represented by a pair of scalar values that represents e.g. a
minimum-maximum pair? Or is it represented by a whole
range of values from measurements or simulations, or pos-
sibly by a probability density function? The different ways
in which uncertainty is represented, coupled with whether
this representation is available at individual spatial locations
dictates to a large degree how uncertainty visualization can
proceed.

Combined uncertainty and data representation:

We now describe a multi-value data type as a means of
representing both data and its uncertainty. Note that this
representation is not a cure all. In fact, it would not be
able to represent missing data, for example. A multi-value
is a data type which is simply a collection of n values about
a single variable at a location p and time ¢: M = [v4],
where i = 1..n (see Figure 2). It is useful for represent-
ing uncertainty as multiple estimates such as those found in
situations where there is variability in the measurement pro-
cess or the physical phenomenon itself. A simple example
is the measurements of temperature at a particular location
using a variety of devices. The measurement from a single
device is a single-valued data — which would also be a spe-
cial case of a multi-value where n = 1. The collection of
temperature values from all devices is a multi-valued tem-
perature data for that location and time. Likewise, ocean
and weather ensemble forecasts are generated from multiple
runs of a set of models or parameters, and have multiple
values for each physical field e.g. pressure, wind, current,
temperature, at every spatial location and forecast period.
Multi-valued data sets offer a richer representation of the
variable nature of some data and can be used to represent
uncertainty as well.

“Multi-valuedness” is a concept orthogonal to multidi-
mensional or multivariate data. That is, a data set can be
multidimensional, multivariate and multi-valued. Multidi-
mensional data refers to the spatial dimensionality e.g. 0D,
1D, 2D, 3D, of the data, and often also includes time as
another dimension. Multivariate data, on the other hand,
refers to the different variables represented at each location.
These variables are usually scalars e.g. temperature, but
may also be vectors such as ocean currents, or tensors such
as velocity gradients, and so on. Of course, a data set can
be both multivariate and multidimensional: these properties
are truly orthogonal. For example, a weather forecast may
be 3D, time-varying and contain information about temper-
ature, humidity, and pressure at each location. In practice,
such data may be stored in a 5D array: three for space, one
for time, and the last one for the different variables. A no-
table visualization system that carries this name is VisbD
[17]. Note that in this context, the term “dimension” in-
cludes the spatial, temporal and multivariate properties of
the data. Multi-valued data adds an extra “dimension” in
that we also need to represent the collection of values for
each variable at each location and time.

Multidimensional, multivariate and multi-valued data are
clearly different, as illustrated in Figure 2. One can have
scalar multi-valued data where each member of the collection
is a scalar (last row, first column), or one can have multivari-
ate multi-valued data where each member of the collection
is a multivariate vector (last row, last column). Clearly, the
multi-valued data representation offers a much richer data
representation compared to the single-value representation
in use today. In the next section, we highlight the uncer-
tainty visualization techniques leading up to multi-valued
representations, and different approaches to visualizing data
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Figure 2: Multidimensionality (space and time), multivariateness,
and multi-valuedness are orthogonal data properties. (a) illustrates
the classic visualization of a scalar data, from a single value to a his-
togram for the multi-values. The next three rows illustrate the mul-
tidimension, multivariate and multi-valued properties. (b) illustrates
the different spatial dimensions, while (c) illustrates the number of
variables in a multivariate data. (d) shows the number of values
in a single-variable multi-valued data. To make the representation
explicit, the multi-values are surrounded by []. (e) illustrates a multi-
valued data set with an increasing number of variables. Note that
the graphical representations from (1c-1e) are for a single position in
time and space. A multidimensional multivariate multi-valued data
(not illustrated, this is a research challenge) would be represented as
in the last row, last column, but replicated at every spatial location.



with such representations.

3 UNCERTAINTY VISUALIZATION

From the visualization point of view, we need to map data,
including uncertainty, to visual parameters such as color,
texture, transparency, geometry, glyphs, animation, etc. To
make effective visualizations, we need to also ensure that
these visualizations are designed to answer the particular
questions or needs of the user. In this section, we look at the
state of the art in uncertainty visualization. The latter goal
of creating effective visualizations is a bit more difficult to
generalize amongst the various types of user tasks without a
more formal study. Instead, we will look at examples of how
uncertainty visualizations can be used in visualizing natural
hazards in the next section.

In the following discussion of uncertainty visualization,
we organize the techniques according to the manner that
uncertainty is represented.

3.1 Scalar Uncertainty

Majority of the uncertainty visualization research so far fo-
cus on uncertainty that are represented as single scalar val-
ues. To illustrate this point, let us look at a number of
examples from the geographic/cartographic communities as
well as the information/scientific visualization communities.
Information about the driving application behind the visual-
izations is provided as needed. Additional details about the
visualizations are available through the referenced works.

The idea of using blurriness, lack of crispness, or fuzzi-
ness to indicate degree of uncertainty is probably the most
intuitive and widely used technique (see Figure 3). This
method is probably best for data over a 2D spatial domain.
Applying this technique to 3D (see left image of Figure 5)
creates some ambiguity arising from the selected viewpoint.
Furthermore, this technique also has the drawback of not be-
ing able to depict slowly changing degrees of uncertainty i.e.
it has relatively poor resolution in terms of distinguishing
amounts of uncertainty.

Visualizing Uncertainty
Visualizing Uncertainty
Visualizing Uncertainty
Visualizing Uncertainty

Figure 3: Uncertainty mapped to blurriness. lllustration of courtesy
of Ben Schneiderman.

The effects of blurriness can be achieved by other means
aside from a low pass filtering operation. For example, un-
certainty can be mapped to transparency (see Figure 4) or
noise (see right image of Figure 5). Comparing these two
examples, the point based approach seem to have the ad-
vantage over the transparency approach particularly for 3D
scenes where occlusion can be an issue in the interpretation
of the amount of transparency.

Figure 4: Uncertainty mapped to transparency. Remnants from ar-
chitectural excavations reveal the locations of building foundations,
coupled with information about the architectural style of the era, al-
lowed the researchers to create a virtual reconstruction of the build-
ings. More opaque regions are more certain. Courtesy of Strothotte
[39].

Figure 5: On the left, positional uncertainty is mapped to fuzzy
surface. The data captures the atomic thermal motion as well as
uncertainty of molecules using a Gaussian distribution [26]. On the
right, positional uncertainty is shown using point clouds. The data
is from a CAT scan of human kidneys with tumor formations. Ar-
rows indicate positions of tumors. Red arrows are places where the
uncertainty is higher [15].

A more drastic approach is to map uncertainty directly
to a color map. The color map can either be continuous or
discrete (see Figure 6). While this approach has the distinct
advantage of allowing the user to easily gauge the degree of
uncertainty, and can be used directly on a 3D scene, it uses
one of the key visual parameters for mapping data values —
color. Hence, if data plus the uncertainty about the data
need to be simultaneously visualized, data would have to be
visually mapped to a less prominent visual parameter.

Rather than mapping uncertainty to color, it can in-
stead be mapped to saturation or value (using an HSV color
model). Figure 7 illustrates this. In addition, the user can
adjust a threshold below which the mapping simply grays
out the uncertainty values. This mechanism allows the user
to focus on the more “interesting” regions.

Drawing contour lines is one of the basic visualization
techniques often applied to 2D data sets. Just as color can
be used to indicate uncertainty, contour lines can also be
used to indicate uncertainty (rather than data). An exam-
ple of such use is in cartography where maps are generated
with contour lines showing different amounts of angular or
area distortions. Contour lines can be embellished so that
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Figure 6: Probability that a magnitude 5.0 or greater earthquake will
hit the Boulder area in the next 10 years is mapped to a discrete
color scale. Image produced by the USGS Earthquake Probability
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Figure 7: Left images show the 95% confidence interval where darker
regions have higher values. Users can then progressively adjust the
focus to only show those regions. [31]. The data is about the con-
fidence levels of the dissolved inorganic nitrogen in the Chesapeake
Bay.

it can depict the underlying data, while the embellishments
depict the uncertainty about the data. Figures 8 and 9 illus-
trate three such embellishments: (a) varying the thickness
of the contour lines, (b) varying the brightness of the con-
tour lines, (c¢) varying the connectedness of the contour lines.
Other variations such as using noise, color, texture or other
visual parameters can also be applied to contour lines.

Another approach proposed by Cedilnik and Rheingans
[8] is to overlay the domain with a grid, and apply modifica-
tions to the grid proportional to the amount of uncertainty
(see Figure 10). Conceptually, this technique should be ex-
tendible to data sets covering 2D manifolds in 3D space as
well. One caveat is that the grid (or whatever texture) can
potentially obscure the underlying data as well.

The examples shown above are for scalar uncertainty val-
ues. Positional uncertainty using FEuclidean distance, con-
fidence level, and probability are all scalar terms. In the
next example (see Figure 11), we look at a 2D vector field
where the angular uncertainty is used to alter the traditional
arrow glyph. In addition to angular uncertainty, magni-
tude uncertainty can also be encoded into these uncertainty
glyphs. Care must be taken in designing and using uncer-
tainty glyphs. For example, it is less confusing to map the
velocity magnitude to the area of the glyph rather than the

Boundary reliabiiy: the broader the boundary fine the lower the reliability

Figure 8: On the left, a contour is overlayed on top of the data map.
The contours show uncertainty and grow thicker as the uncertainty
rises [31]. The data set is the same one as in Figure 7. A similar
idea is used on the right image where the reliability of watershed
boundaries is inversely mapped to the width of the boundary lines
[33].

Figure 9: Yet another variation on how uncertainty can be depicted
on contour lines. The contours show uncertainty and appear more
broken as the uncertainty rises [11]. Color of the contour lines is
available for mapping to another variable.

usual mapping to length of the arrow [45].

In summary, most of the uncertainty visualization re-
search has focused on situations where the uncertainty is
represented as a scalar term. Several techniques are now
available for including scalar uncertainty in the visualization
of scalar 2D and 3D data sets. In the last example, we have
shown an example where uncertainty in a 2D vector field is
visualized. Research is also ongoing in showing uncertainty
in tensor fields such as those found in diffusion tensor imag-
ing [4] and in geomechanics simulations. Omitted from the
examples above are animation techniques where uncertainty
is mapped to different animation parameters [12]. But the
applications where such techniques have been applied usu-
ally have scalar uncertainty terms.

In the next two sections, we look at examples where the
uncertainty is represented by more than a single number.



Figure 10: A grid is superimposed over the 2D domain. The data
values are mapped to color, while the grid is modified according to
uncertainty values. On top, it is mapped to amplitude, while on the
bottom, it is mapped to noise [8]. The data set shows the total
ozone measurements made by the Nimbus-7 satellite on September
16, 1979. Onboard sensors are subject to drop outs hence leading to
uncertainty in portions of the data set.

3.2 Vector Uncertainty

Here, the term vector refers to a feature vector, or a set of
numbers that characterize the uncertainty at a particular
location. A common example is to use a pair of numbers
i.e. minimum-maximum value pairs to represent the bounds
of an interval where the actual data value may lie. This is
illustrated in Figure 12 where the min-max pairs define the
extent of the bar glyphs that are drawn over the mesh sur-
face. This technique works best on 1D data sets. Extending
it to 2D data sets such as the one shown in Figure 12 can
potentially obscure how much above or below the surface
the min-max pair is, specially if the surface is rendered e.g.
transparently. Drawing bars to represent the pairs does not
extend very well into 3D volumetric data sets.

In situations where multiple statistics, or a vector of fea-
tures is available, then multivariate visualization techniques
may be applicable. An example of this is to map (up to 3)
values to an HSV color model [29]. Figure 13 shows such as
example. Since the mapping is to a color model, the tech-
nique can be applied to 2D and 3D data sets. However,
where surface shading is used, it may cause some ambiguity
with the value mapping.

We do not find as many examples where uncertainty is
represented as a feature vector. But in cases where they
appear, glyphs, color mappings, and other multivariate vi-
sualization techniques are applicable.

Figure 11: Angular uncertainty represented as angular spread is
mapped to the width of the arrow head [45]. Data is derived from
correlating radial vectors from two different sensor locations. The
derived 2D vector field has higher accuracy closer to the sensor lo-
cations and drop off with distance as well as the angular difference
between the two sensor locations. That is, if the radial components
from the two sensors have less angular difference, the derived vec-
tor also has less accuracy. [45] also describes methods for showing
uncertainty in velocity magnitudes in the derived vector field.

Figure 12: Minimum and maximum pairs rendered as bars below and
above the wireframe surface respectively. The data indicates future
water balance change predictions [10].

3.3 Multi-value Uncertainty

When data comes in the form of a multi-value at every point,
we have information about the data values as well as the
ability to derive additional information about the collection.
For example, given a single multi-value datum, we can cal-
culate some parametric statistics about that datum such
as mean, standard deviation, minimum, maximum, inter-
quartiles, etc. These data descriptors can then be visualized
with, for example, a box plot. Alternatively, the data could
be binned and rendered as a histogram. This is illustrated
in Figure 14. An obvious limitation is that this method, as
well as the box plot method, does not scale well with spa-
tial resolution; neither does it scale with higher dimensional
data.

An alternative approach is to display the properties of the
multi-value on a separate location or geometry (see Figure
15). Examining the left and right walls, one can observe that
the distribution of values on the left portion of the left wall
and the right portion of the right wall (which corresponds
to points in the vicinity of the corner in the foreground)
have a bimodal characteristic. Looking at the left wall also
reveals that there is a shift in the mean value about halfway



Figure 13: HSV color mapping of three variables. Hue is mapped
to the mean of the data values, saturation is mapped skewness, and
value is mapped to standard deviation. Dark regions represent areas
of high standard deviation or uncertainty. Brighter regions represent
places where the data values are skewed to the left — in this particu-
lar data set, those regions correspond to places where ground truth
measurements were taken [29]. The data set is from conditional
simulations of “forest coverage” over a small region in Netherlands
[21]. The visualization highlights locations with ground truth read-
ings, areas of higher uncertainty (standard deviation), as well as mean
characteristics of the conditional simulations at each spatial location.

across, with a corresponding increase in spread of values
and reduction in peak height. While such visualizations can
offer more insight into the properties of this 2D multi-value
scalar field, there are 2 drawbacks: (a) It does not show
the entire 2D multi-value field at once. Instead the user
has to interactively explore the space by selecting different
transects or slices through the data space. (b) This approach
does not scale with spatial dimensionality and therefore does
not work well with 3D multi-value scalar fields.

Using multivariate visualization or the GIS layered the-
matic approach has similar limitations as illustrated in Fig-
ure 16. This approach also suffers from inability to scale
beyond 2D data sets.

A more general approach to dealing with multi-value data
sets is an operator based approach [29]. Here, mathemati-
cally and procedurally defined operators work directly with
multi-values as a data type. Using this approach, tradi-
tional visualization techniques such as contour lines, isosur-
faces, streamlines, etc. can be modified to work directly with
multi-values. Figures 17 to 19 illustrate this.

Multi-values are much richer representations of data and
their associated uncertainty. Visualizing multidimensional,
multivariate, multi-values is quite challenging, although the
operator based approach does provide a means for attacking
this challenge. Because of the large degree of freedom on
how operators are defined, the subsequent interpretation of
the visualizations must be done with care. Users must also
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Figure 14: Multi-value rendered as a histogram. While this approach
works for individual data points or low spatial resolution data, this
approach does not scale well with spatial resolution and dimension.
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Figure 15: The multi-values corresponding to those found on the
right line are displayed as a colored surface on the left wall, while
those found on the left line are displayed on the right wall. The
height of the walls corresponds to the range of values in each multi-
value, while the color on the walls represents the frequency of values.
The color on the flat surface corresponds to the mean of the multi-
value at each location. The data is the same as in Figure 13. This
visualization shows more detail about the characteristics of the multi-
value at each location e.g. modality, shifts in mean, etc; however, it
is done at the expense of looking at only part of the data at a time
rather than at the entire 2D field simultaneously.

be educated on how to interpret such visualizations.

4 TASK ORIENTED VISUAL MAPPINGS

In the previous section, we looked at various ways in which
uncertainty information can be mapped to visual parame-
ters. In the case of multi-values, one of the key problem was
how to pack as much information into the display.

In this section, we relax the criterion a bit and instead
we first decide what subset or feature of the multi-value
(or uncertainty) information needs to be presented. We
should also preface this section that there has been a few
notable work on the more theoretical aspects of effective
visualization particularly from the point of view of percep-
tion. Bertin [6] described 8 variables (plane — 2 variables in a
2D domain, size, value, color, grain, orientation, shape) and
identifies whether they are selective, associative, ordered, or
quantitative. Tufte [41] advanced the idea of graphical ex-
cellence where a visualization gives the viewer the greatest
number of ideas in the shortest time with the least ink in
the smallest space. Ware [44] brings the physiological and
cognitive psychological views such as pre-attentive process-



Surface graph: Standard Deviation
Contour color: Interquartile
Bars: | Mean — Median |

Figure 16: The bottom plane is the mean field colored from non-
forest (cyan) to forest (red). The upper plane is generated from three
fields: the bumps on the surface is from the standard deviation field
and colored by the interquartile range; the heights of the vertical bars
are from the absolute value of the difference between the mean and
median fields colored according to the mean field on the lower plane.
Only difference values exceeding 3 are displayed as bars to reduce
clutter. The data is the same as in Figure 13. This approach uses
parametric statistics and assumes the multi-values can be adequately
described by these statistics. However, for ill-behaved distributions,
or higher dimensional data sets, this thematic layered approach is
inadequate.

ing, gestalt laws, memory, eye movement patterns, etc. to
bear on designing effective visualizations. Zuk and Carpen-
dale [46] used components from Bertin, Tufte, and Ware
to analyze different uncertainty visualization methods. An-
other measure of effective visualization can be taken from
the viewpoint of how well the visualization aided a particu-
lar task. In this regard, the key issue that Thomson et al.
[40] are addressing is how to map different types of uncer-
tainties (e.g. accuracy/error, precision, consistency, lineage,
currency/timing, credibility, subjectivity, interrelatedness)
to visual metaphors. As an initial step, they have identified
the underlying models for the different types of uncertain-
ties and are in the process of finding the appropriate visual
metaphors for the different models.

While it is important to be aware of perceptual issues in
designing the visualizations, it is equally important to be
aware of the cognitive issues in terms of how viewers inter-
nalize and understand the visualizations and how the visu-
alizations influence their decisions and actions. Hence, we
include a few examples from cognitive psychology research
that the visualization community can learn from in terms of
right and wrong ways of presenting information. First of all,
decision makers are able to process and use only a limited
number of variables particularly when under time pressure.
Therefore, it is foremost that presentations are kept simple
and reserved for the most critical information in their deci-
sion process. In a recent study, Peters et al. [36] found ev-
idence that suggests a tradeoff between the completeness of
data provided versus its comprehensibility — that in fact in-
creasing the completeness of information can decrease com-
prehension and use of information in decisions. This sug-
gests that information presentation should not overload the
cognitive tasks, and selective pre-processing such as feature
extraction, can alleviate the cognitive load by helping the
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Figure 17: Contour lines showing where the multi-values in the 2D
field are similar to the distribution shown on the right. The data
is from multi-return LIDAR surveys of an Alaskan island [22]. Each
location of this 2D multi-value field shows the tree heights within
a 10 x 10 square meter stand of trees. The distribution of tree
heights at each location sheds important information about the trees
e.g. old growth stand, storm damage and regrowth, etc. Using this
visualization, the scientist found all locations on the map where the
tree heights correspond to those found in areas recovering from a
weather disturbance event.

users focus on the important aspects of the data. Secondly,
the manner in which the information is presented can influ-
ence how decisions are made. For example, Slovic et al. [38]
found that a risk factor of “20 out of every 100 persons simi-
lar to Mr. Jones are estimated to commit an act of violence”
was perceived as being riskier than “persons similar to Mr.
Jones are estimated to have a 20% chance of committing an
act of violence”. Slovic et al. [37] also conducted a study
that suggests individuals will “image the numerator” and
“neglect the denominator”. Hence, information presented as
“115 out of 10,000” and “2 out of 10,000” are more likely to
be comprehended and used as opposed to the equivalent in-
formation presented as “23 out of 2,000” and “1 out of 5,000”
respectively. These results suggest that visualization design-
ers should also be careful in choosing the numeric scales and
manner (e.g. frequentist) in which data is presented because
the visualization can influence the decisions of the users in
unintended ways. Another important finding is that we tend
to conceptually simplify spatial entities [42]. For example,
curves are often remembered as straighter as they actually
are, angles of intersections are schematized to 90 degrees,
and areas of regions are diminished in memory. This con-
cept of the mind simplifying spatial entities has been used
successfully in maps [1]. The visualization community can
likewise take advantage of this trait in presenting complex
information.

In the context of hazard communication, there are many
stakeholders that need the information e.g. planners, emer-
gency response teams, media, public, etc. Obviously, differ-
ent stakeholders different needs and uses for such informa-
tion. A “one-size-fits-all” approach in hazard visualization
may therefore not be the right approach. As an alternative,
one can identify classes of users, types of tasks, complexity
of data they are dealing with, and then attempt to find a
framework that matches one or more visualization methods
that has been shown to effective from best practices. The
success of this approach depends on how well each category
of users, tasks, and data is representative of the particular
instance at hand. That is, how good is the resolution within
each category, and how well does each element represent
members of that category. An initial coarse categorization
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Figure 18: An isosurface using a reference temperature multi-value
is shown on the right. The surface represents regions in the data
where the multi-values are very similar to the reference multi-value.
Color of the surface shows the standard deviation of the multi-value
at each location. The data set is from an ocean circulation model
of the Middle Atlantic Bight shelfbreak which is about 100 km wide
and extends from Cape Hatteras to Canada. Both measurement
data and ocean dynamics were combined to produce a 4D field that
contains a time evolution of a 3D volume including variables such
as temperature, salinity, and sound speed [27]. An ensemble of 600
Monte-Carlo forecasts of each field was produced.

can be as follows.
Types of users:

1. Scientists, Engineers, Doctors. This group of users are
experts and familiar with the data sets they are working
with. They are usually looking for a known feature in
the data set e.g. location and extents of weather fronts
or shockwaves; maximal stress points in structural de-
sign; and existence, presence, size of tumors.

2. Policy Makers, Decision Makers, Court Cases. This
group of users may not be very familiar with the data
set, but need to get a high level understanding and the
potential impacts provided by the data set.

3. Operational Users. This group of users have a fairly
well defined set of visualization products that they
need.

4. Casual Users. This group of users would generally have
the lowest technical expertise about the data. They
are similar to the second group above, but their use of
the visualization may be for educational/informational
purposes, or the decisions they make based on the vi-
sualizations do not have as large a consequence.

Types of tasks:

1. Analysis. The types of tasks that fall under this cat-
egory may include feature extraction, identification,
quantification, comparison, etc.

2. Monitoring. Usually, the task itself is passive, and is
event-driven e.g. out of the ordinary trigger events.
There is also some degree of assessment to gauge the
severity of the event and to decide if an alert needs to
be issued.

3. Eaxploration. Data Mining. Here, the user does not
necessarily know what features to look for. They are

Figure 19: Streamline visualization of ensemble weather fore-
casts [29]. It is rendered with overlapping transparent cir-
cles. The effect is similar to using blurriness to depict uncer-
tainty. This data set is courtesy of NOAA's operational forecasts
(http://wwwt.emc.ncep.noaa.gov/mmb/SREF/SREF.html).  The
ensemble was created from two different models: ETA and RSM,
with 5 different initial and boundary conditions each producing an
ensemble or collection of 10 members at each location where the two
models overlap. Unfortunately, the two models are not co-registered
and have different projections and spatial resolutions. Thus, for the
purpose of this paper, we just used the five member ensemble from
the RSM model. The resolution of the RSM model is 185 x 129
and has 254 physical variables at each location. Velocity is avail-
able at every location in the model. However, only horizontal wind
components are recorded and that is what is shown in this figure.

looking for “interesting” aspects or perhaps hidden re-
lationships in the data set. The tasks are therefore in-
vestigative by nature, and may even include “What-if”
type questions.

4. Persuasion. Communication. The results or messages
are known, and the user simply wants an effective way
of conveying them.

Types of data:

1. Data dimensionality. This refers to the spatial and
temporal dimensionality of the data. Related to this
is mathematical manifold e.g. a 1D data could reside
in 3D space as a curve.

2. Data type. This refers to whether the data is a scalar,
vector, or higher order tensor quantity. Usually, visu-
alization will focus on showing derived quantities from
higher order tensors.

3. Multivariate data. This refers to how many separate
variables are available at each physical location, or sam-
pling/measurement event.

4. Multi-value. This is as described in the earlier section
of this paper.

5. Ordinal, Cardinal, Categorical. This mainly refers to
whether the data can be ordered or grouped.

Given the categories above, the next task is to create a
framework where different visualization methods can be used
to match the needs of a particular user, task, data combi-
nation. This framework would be applicable whether uncer-
tainty is a concern or not. Thus, if uncertainty is the primary
concern, then the data category corresponds to the underly-
ing model classification in [40]. On the other hand, if data
and uncertainty both need to be visualized, the previous



section illustrated some of the available techniques. In the
next section, we will examine a few specific cases of hazard
visualization and how they may relate to this framework.

5 HAZARDS VISUALIZATION

Natural (and man made) hazards occur at different time
scales. Environmental effects from pollution, logging prac-
tices, etc. take longer before the impacts are evident. On
the other hand, fire, hurricane, flooding, earthquake, terror-
ist threats require a more urgent response. Different types
of users will be interested in these hazards in different ways.
The technical professionals would be interested from the
point of view of modeling and prediction of these phenom-
ena; the decision makers would be interested to know the
likelihood of when, where, how significant or catastrophic
the event might be; the operational users would like to know
if there’s sufficient basis to recommend an alert or emergency
procedure; while the casual user may be more interested in
safety of their loved ones, or perhaps evacuation routes from
approaching hazards.

With regards to tasks, examples related to hazards visu-
alization may include: forecast and track the trajectory of a
hurricane, determine the likelihood of an earthquake occur-
ring at some region within a certain time frame and certain
magnitude, study the cause and effect relationships of rise
in sea surface temperature to migratory patterns of birds,
monitor computer server traffic patterns for denial of service
threats, etc. We look at how visualization and uncertainty
play a role in two applications.

5.1 Seismic Application.

Seismic activities can trigger a chain of events that require
immediate action. Aside from the immediate damage from
a strong earthquake, it can also cause subsequent damage
in the form of fires and tsunamis. Liquefaction causes much
destruction in earthquakes, and their characterization is sub-
ject to uncertainties in determining the relevant properties of
natural soil mass [3]. The visualizations needed for seismic
applications can vary from modeling/analyses of movements
on fault lines, soil liquefaction and impact on surrounding
structures, etc., to planning the best evacuation route in case
of flooding, maps showing how to best deliver disaster relief
services, etc.

Some of the visualizations available on the web include
the following: (i) Figure 20 shows the 3D structure of under-
ground and underwater faults, (ii) Figure 21 shows frames
from an animation of seismic wave propagation towards the
surface, (iii) Figure 22 shows a USGS hazard map.

As illustrated in the figures, earthquake visualization
spans the range of ground motion estimation in 2D and
3D, and characterization of fault structures in 3D. What
has been omitted is the large body of work aimed at pre-
venting or mitigating disasters by designing structures to
withstand severe ground movements. In this regard, the
data type of interest are usually 2nd order symmetric ten-
sors that represent stress and strain, as well as 4th order
constitutive relationships [16] that describe how materials
respond to stress over time. With the exception of Figure
6, the seismic related visualizations do not really portray
uncertainty. And even with Figure 6, the visualization is
straightforward in the sense that the data is 2D, the uncer-
tainty is a scalar term, and no other underlying data need
to be presented simultaneously. This type of visualization
seems to be representative of those found in www.hazus.org
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Figure 20: On the left, fault block diagram showing 9 of the 11
major faults in the Santa Clara Valley [18]. On the right, the physical
structure of a North Sea oil field derived from 3D seismic data [2].

Figure 21: 4 direct volume rendered frames from an earthquake-
induced ground motion simulation [30].

as well. Perhaps the reasons for the lack of uncertainty vi-
sualization in this field are because uncertainty is difficulty
to quantify in a meaningful way (lack of data, lack of knowl-
edge, etc.); the scientists and engineers are still grappling
with how to visualize 3D second order tensors, not to men-
tion 4th order tensors. Nevertheless, there is a need to focus
on developing uncertainty visualization techniques in this
area as probabilistic models are being employed to study
elasto-plasticity [19] and the simulations are generating es-
sentially multi-value at each location. In short, if we try to
examine the needs of the different users within the seismic
application related communities, we find that the current
data acquisition (modeling and measurements), and partic-
ularly the visualization tools and techniques are still quite
rudimentary. We obviously still have quite a few hurdles to
overcome before meeting their needs.

5.2 Weather Application.

The spectacular force of nature is usually felt in severe
weather disturbances like hurricanes. These hazards hap-
pen on a relatively periodic and predictable pattern, and
with significant consequences to lives and property. Because
the time scales is such that advance warnings can greatly
save lives, there is much more research and advancement in
this area.

Output from weather forecasting models, grouped to-
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Figure 22: Hazard map showing regions with the same 10% proba-
bility of exceedance in 50 years, but with different degrees of ground
motion [7]. Warmer regions do not necessarily indicate areas that are
more likely to experience an earthquake, just that if it does happen
it would be more severe.

gether into an ensemble forecast, coupled with in-situ and
remote satellite measurements, are assimilated and used to
refine nested models, to produce fairly accurate weather fore-
casts. However, the degree of accuracy may vary quite a bit
depending on a number of factors such as the typical cli-
mate of the region, micro-climates, size and intensity of the
disturbance, and how far out in time the forecast is for.

While accuracy of a weather forecast is broadly used these
days, for example, weather report stating 30% chance of
shower, or the projected path of Hurricane Katrina (see
Figure 23), the accuracy, or alternatively, the uncertainty,
is presented at a fairly coarse level. 30% chance of shower
within which smaller geographic region, or narrower time
window?; or in the case of Figure 23 — is the hurricane track
equally probable within the white region, or is it higher in
the middle of the path? How about the accuracy of the
strength and estimated arrival time of the storm? Such in-
formation are important for decisions such as whether one
should bring an umbrella, or to go to the beach, or to initiate
evacuation procedures, etc.

~ Approx. Distance Scale ( Statute Hiles )
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NWS TPCiNational Hurricane Center
Advisory 24
Current Center Location 26.9 N 89.0 W
Max Sustained Wind 165 mph
Current Movement NW at 13 mph
@ Current Center Location
@ Forecast Center Positions
H Sustained wind > 73 mph
S Sustained wind 38-73 mph
D Sustained wind <33 mph
. Potential Day 1-3 Track Area
W Hurricane Warning
Hurricane Watch
ical Storm Warning

Figure 23: Projected path of Hurricane Katrina.

Uncertainty visualization for the weather application is in
better shape compared to the seismic application. However,
there are rooms for improvement. For example, the process
of generating Figure 23 could be automated. One way to
do this would be with multi-value streamline integration as
shown in Figure 19. While winds from hurricane can cause
a lot of damage, the associated flooding and landslides can
just be as deadly. It would be beneficial to integrate the
modeling of these events and couple them with topographic
and levee system information.

6 CHALLENGES

Decisions can only be as good as the quality of informa-
tion to work with. However, when dealing with real world
data, and even with simulation data, data uncertainty is a
fact of life. The presence of uncertainty should not only be
acknowledged, but we also need to have a concerted effort
to account for them, quantify, represent, track, and operate
directly on them.

In our driving science applications related to natural haz-
ards such as, geomechanics, oceanography, and weather fore-
casting, we need to deal with spatial dimensionality of 2
to 4 (space and time) and with highly multivariate in-
teractions. Adding uncertainty, specially in the form of
multi-values, can be quite challenging from the visualization
point of view. Furthermore, multidimensional multivariate
multi-valued data sets are inherently much larger and hence
present a computational and informatics challenge in itself.
Johnson and Sanderson [20] mentioned the development of
new uncertainty visualization techniques as one of the key
challenges. Dealing with multi-valued data certainly falls un-
der this category. Griethe and Schumann [14] cites the lack
of uncertainty visualization techniques for abstract data as
another research challenge. This is certainly true as higher
level abstractions need to be presented from these scientific
based applications in order to facilitate the task of decision
makers.

In summary, the theoretical and computational capabili-
ties of current visualization techniques need to be extended.
In particular, the research agenda should include:

1. A formal and theoretical framework for uncertainty vi-
sualization as proposed by [40] but one that is also
cognizant of the users needs and tasks as well as the
properties of the data that they are dealing with.

2. Research on uncertainty representation that captures
its multi-faceted nature e.g. data are from multiple
sources with varying degrees of reliability, etc. This in-
cludes visualization techniques that incorporate multi-
values. In the earlier examples, we showed some visu-
alization techniques that work with multi-values. How-
ever, there is a lot more research needed. For example,
we still don’t know how to do direct volume rendering
on such data sets, nor do we know how to do critical
point analyses on such data sets.

3. Research on data analyses techniques that take advan-
tage of such representations. This may also include fea-
ture analyses and extraction as a means of condensing
the important aspects from large data sets.

4. For the general area of seismic applications, we need
to advance basic visualization techniques for 3D 2nd
tensors fields, 4th order tensor fields, as well as proba-
bilistic tensor fields.



5.

A broader research into the perceptual and cognitive
processes in how we digest and act upon visualizations,
particularly those that contain uncertainty information.

Uncertainty is an integral part of the data that we look
at on a daily basis. The tools that we develop should reflect
the nature of such data, and allow us to explicitly see them
and factor their influence in our decision making.
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