
Spray Rendering as a Modular Visualization Environment

Alex Pang and Craig Wittenbrink

Baskin Center for Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064

Spray rendering is a modular visualization environment (MVE) similar in many ways to AVS,

IBM DX, and SGI Explorer. It retains the main attracting features such as modularity, extensibility

and relative ease of use. Its distinguishing features are its execution 
ow and the �ner granularity of

visualization modules. In this paper we brie
y describe the Spray rendering environment together

with its Mix & Match capabilities and its collaborative visualization extensions. We then highlight

its di�erences from other systems and list some of the advantages o�ered by Spray rendering.

Finally, we look at some of the open issues and challenges facing our system and MVEs in general.

Spray Rendering

Spray rendering uses the metaphor of spray cans to paint and visualize data sets. Conceptually,

visualization users grab and aim spray cans into their data sets. Depending on the type of paint in

the can, di�erent data features are highlighted and rendered. The paint particles are referred to as

sparts which stands for smart particles. They combine the power of both particle systems [Ree83]

and behavioral animation [Rey87] to seek out and highlight features of interest in the data set.

Sparts can be programmed to produce e�ects similar to other popular visualization algorithms.

Color plates 1-5 illustrate some of the visualizations produced by di�erent types of sparts. For

example, a surface seeking spart �nds isosurfaces just like the marching cubes algorithm. Other

sparts include 
ow trackers for visualizing vector �elds, and x-ray sparts for a quick and dirty

inspection of scalar �elds. More exotic sparts may be made, for example a spart that lays down

arrow icons in a vector �eld only in areas where the pressure is in a given range.

Operationally, each spray sends out a number of sparts into a local region in the data set. Each

spart then travels through the data set according to its programmed position update function,

looking for its programmed target functions, depositing or exhibiting appropriate visual actions

wherever targets are found, and checking whether it should terminate itself or spawn new sparts.

Note that the programmed behavior of a spart is independent of how they are sent to the data.

Thus other possible user interactions, some of which have also been implemented, include 
ooding

the data set, 
ashlights to highlight the visual e�ects which disappear when the can is pointed

away, sprinklers for continuous or intermittent sprays, probes which report values in some local

data region, and event driven sparts which react to changes in the data stream.

Mix & Match

The type of sparts determine the visualization produced. Sparts are either pre-de�ned or con-

structed interactively. The Mix & Match [PA94] feature of Spray rendering provides both a textual

1



and graphical interface for building sparts from components. Components can be classi�ed as one

of four categories: targets, behaviors, position updates, and spawn/death functions. Each compo-

nent is implemented as a function. These can then be combined to specify a particular spart. For

example, a surface seeking spart can be de�ned by a target function that looks for a threshold value

in the spart's vicinity, leaves a surface when the threshold target is found, moves some distance

along its sprayed trajectory, and decides to terminate itself once it is out of the data space. This

form of spart construction provides the modularity and code reuse of many spart components in

creating di�erent sparts. It also promotes extensibility since each component is small and easy to

write.

CSpray

CSpray is Collaborative Spray rendering [PWG95], and includes the necessary constructs, interface

mechanisms, and network programming for many distributed users to work at once in a single

workspace. The main research issues for CSpray are the use of visualization-primitive streams,

instead of video, or raster streams, to communicate, the e�cient use of available network bandwidth,

the appropriate metaphors for distributed, scalable, and fair interaction, and the inclusion of varying

grades of client service. With visualization-primitive streams, the possibilities for compression

are greater, and participants have more 
exibility depending on their rendering power. We are

investigating visualization stream creation as a method of distributed system resource allocation

with graphics workstations, from SGI Reality engines to X terminals. Using di�erent grades of

service, we have created a collaborative environment, where the resources available through the

network give all users access to the session. Work is just beginning on collaboration over an ATM

(Asynchronous Transfer Mode) network.

For more information and details on Spray, Mix&Match, CSpray, and our ongoing work on envi-

ronmental visualization please refer to the visualization section under the REINAS project heading

in World Wide Web{Uniform Resource Locator, http://www.cse.ucsc.edu/research/projects,

and to our papers [PWG95, PA94, Pan94].

Similarities and Di�erences

Spray rendering shares several prominent features with commercial MVEs such as: the modularity

of the data and visualization transformation blocks, the extensibility of the system by adding new

modules, the adaptability to distributed and parallel implementations, and the relative ease of use

especially with the visual programming interface for creating visualization networks.

There are two main di�erence between Spray and commercial MVEs: Granularity: The gran-

ularity of spart components are �ner than the modules in commercial MVEs in two senses: the

components are simpler and smaller, and they are programmed to process a subset of the data.

Spart components are easier to write because they generally have very speci�c and simple tasks such

as: advance one step in the spart's current direction, generate a polygon at the spart's current loca-

tion, �nd an isovalue in the spart's vicinity, or perform compound boolean (and/or/not) operations

on input values. Since spart components have a �ner granularity, it also o�ers more 
exibility in

terms of combining them to generate new sparts. Additionally, the granularity of spart components

calls for traversing input data streams and creating visualization primitives rather than images, or

entire scenes or objects. This allows massive parallelism, high e�ciency with enormous data sets,

and �ne enough threading to allow for many possibilities in the scheduling and multitasking of

executing spart processes.

2



Execution 
ow: Instead of moving data through modules in a data 
ow fashion, the execution


ow in Spray rendering moves modules through the data. Conceptually, one can think of sending the

sparts as intelligent agents to the data space to look for targets and highlight features of interest. As

a consequence of this, we had to analyze and rethink a lot of the visualization algorithms and cast

them in a form that would work on a particular subset of the data at a particular time. The process is

not unlike converting sequential code to take advantage of the data parallel programming paradigm.

In the case of visualization methods, they can be generalized to having two basic operations: a

feature or target extraction process and a \make the feature visible" process. These ideas are

encapsulated in the composition of a spart. The spart execution 
ow imposes a simple structure

on a spart's life cycle { a spart simply goes through its list of target functions and executes its

behavior functions whenever/wherever the targets are satis�ed; it then changes its position using

its position update function and decides whether it should terminate or spawn new copies of itself.

Note that all spart components need not be present. For example, target functions are usually

absent in sparts that operate on vector �elds since these sparts are normally carried around by the


ow. The missing components are simply skipped during the execution of a spart.

Challenges

Kaufman and Nielson [NK94] use the metaphor of life to place the visualization �eld at a stage

where it has just �nished high school and is about to go to college. MVEs cannot out-pace the

basic visualization tools that they incorporate, so more basic research in visualization is needed. In

terms of the integration, usability, and value added features, MVEs share the concept of modularity

and extensibility. They are also easy to use, and the ability to add and share independent modules

contribute to the growing number of MVE users. If MVEs today are also about to embark on

collegiate challenges, then we think two major challenges are: Integration of visualization and

database and e�ective use of parallel and distributed resources for rendering.

Today, data sets are mostly stored in �les, loaded, then visualized. One problem with this

approach is that one must know the format of the �le. Special routines or procedures must be

created before the data can even be loaded. Notes must also be kept on which routines were used

to read the �le so that work is not duplicated when the same �le needs to be read again sometime

later. What is needed is a push away from �les and towards better integration between visualization

and database components. We need to take advantage of database technology to visualize large

data sets interactively, and push the data formatting problem to a data load path issue. The latter

will also encourage sharing of data instead of just MVE modules. Perhaps a common application

programming interface (API) that supports query access, (geographic, spatial, temporal, and value)

clipping, resampling, and conversion will help push MVEs into their �rst year of college.

Parallel and distributed rendering allow greater scaling in the amount of rendering requests

that can be satis�ed. With queries creating demands for terabytes of data, there can also be large

demands on the rendering required for a given data set. Many MVEs batch their requests, and it's

fairly easy to overload a single workstation. Of course it's easy to say that parallel and distributed

rendering can markedly improve performance for interactive rendering, but it has proved challenging

to do so. Transparent, e�ective use of remote parallel and distributed resources for rendering is a

challenge for all MVE developers.

In Spray rendering, we also face these challenges. Speci�cally, we are working on the par-

allelization of sparts, handling irregular grids and scattered points, and better integration with

databases. To a certain extent, the database issue is the crux of the challenge. That is, given a

database that can support queries of spatial and temporal data relationships at a �ne enough and

3



fast enough level, each spart can make their own query as they travel through data space. The

problem of dealing with a large number of scattered points is made simpler as the number of points

is much smaller and only within the immediate vicinity of the spart. But, with currently available

databases' performance, we are still forced to solve much of the problem in querying, caching, and

traversing data in the visualization software itself, leaving us with signi�cant challenges to graduate

to the next level.

References

[NK94] Gregory M. Nielson and Arie E. Kaufman. Guest editor's introduction: Visualization

graduates. IEEE Computer Graphics and Applications, 14(5):17 { 18, 1994.

[PA94] Alex Pang and Naim Alper. Mix & Match: A construction kit for visualization. In

Proceedings: Visualization '94, pages 302 { 309. IEEE Computer Society, 1994.

[Pan94] A. Pang. Spray rendering. IEEE Computer Graphics and Applications, 14(5):57 { 63,

1994.

[PWG95] Alex Pang, Craig M. Wittenbrink, and Tom Goodman. CSpray: A collaborative scien-

ti�c visualization application. In Proceedings SPIE IS &T's Conference Proceedings on

Electronic Imaging: Multimedia Computing and Networking, to appear 1995.

[Ree83] W. T. Reeves. Particle systems: A technique for modeling a class of fuzzy objects.

Computer Graphics, 17(3):359 { 376, 1983.

[Rey87] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. Computer

Graphics, 21(4):25 { 34, 1987.

4



Figure 1: Spray rendering interface. Visualization shows temperature inversion isosurface colored

with humidity values, vector glyphs to represent the wind �eld, and a pseudo-colored cross sectional

slice of the temperature �eld.

5


