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ABSTRACT

Recent e�orts in visualization have concentrated on high volume data sets from numerical simulations and medical

imaging. There is another large class of data, characterized by their spatial sparsity with noisy and possibly missing

data points, that also need to be visualized. Two places where these type of data sets can be found are in oceanographic

and atmospheric science studies. In such cases, it is not uncommon to have on the order of one percent of sampled

data available within a space volume. Techniques that attempt to deal with the problem of �lling-in-the-holes range in

complexity from simple linear interpolation to more sophisticated multiquadric and optimal interpolation techniques.

These techniques will generally produce results that do not fully agree with each other. To avoid misleading the users,

it is important to highlight these di�erences and make sure the users are aware of the idiosyncrasies of the di�erent

methods. This paper compares some of these interpolation techniques on sparse data sets and also discusses how other

parameters such as con�dence levels and drop-o� rates may be incorporated into the visual display.

1 INTRODUCTION

Most visualization algorithms involve an interpolation or �ltering step. These can be seen in techniques ranging

from iso-surface extraction, ray-casting for volume rendering, to splatting and particle tracing. These operations are

usually taken for granted since results are often quite acceptable when these visualization algorithms are applied to

very dense data sets such as those obtained from medical imaging or computational 
uid dynamics. However, when

dealing with sparse data sets, the basic assumption of continuity or homogeneity between sample points may not be

valid anymore. The situation is compounded when data sampling is not su�cient to accurately capture the physical

phenomena happening between data points.

This paper is concerned with the e�ects of di�erent interpolation strategies when visualizing sparsely sampled data.

Sparsity of data may arise due to the physical constraints of data collection. Among these are the inaccessibility and

excessive interference introduced by the sensors in the �eld they are trying to measure. For example, in invasive heart

potential measurements or wind tunnel measurements, the presence of too many sensors may in
uence the readings.

Another common reason given for sparse data falls under �nancial constraints. For example, the cost of populating

every square mile of the country with a weather station (often called met-stations) is too high. In fact, in some

instances, it would also be di�cult to scienti�cally justify (e.g. over a homogeneous terrain). On the other hand, this

may not be enough resolution for studies dealing with smaller time and space scales.

Another characteristic of sampled data is their imperfect nature. When dealing with measured data, one often

have to deal with noisy (spurious or missing) data. The measuring devices may also drift and need to be recalibrated

regularly. Some instruments may have di�erent accuracy characteristics depending on angle and distance, and may also

have a sharp drop-o� in reliability. Data readings may also be a�ected by variability due to environmental conditions



when the data was taken (e.g. rain, fog, etc.).

Faced with the problems of sparse and imprecise data, it is hard to form an accurate picture of the world that we

are observing. Nevertheless, a number of methods exist which try to compensate for the inadequacies in the available

data. Making certain assumptions about the homogeneity data, these methods try to make up for the often large gaps

in the data. Other, more elaborate, methods bring into consideration con�dence levels of various sensors.

The rest of the paper is organized to give a brief overview of di�erent interpolation techniques and the application

domain in the environmental sciences. We then present and examine two classes of interpolation strategies (Shepard's

interpolation and Hardy's multiquadrics). Finally, we consider slight modi�cations to these strategies to include

uncertainty and drop-o� rates.

2 BACKGROUND

Since data is not available everywhere, one has to resort to interpolation or approximation to �ll in the missing

areas. These methods have roots from di�erent areas: statistical data analysis and approximation theory where the

most commonly encountered would be least squares approximation; and surface modeling with splines and di�erent

forms of basis functions. With sparse data sets, one must be careful when applying these methods as there may

be some physical dynamics going on between data points that are not incorporated into these general interpolation

methods. It is thus important to understand the nature and applicability of the di�erent methods.

One can categorize the numerous interpolation and approximation alternatives either by the e�ects of the algorithms

or by the methods employed by the algorithms. Below, we summarize the e�ects-based taxonomy used by Schumaker
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on the problem of �nding a function f which reasonably approximates F from a given set of points F
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i = 1; 2; :::; N , located in the (x,y) plane domain D. Note that this could be extended to higher dimensions as

well. Schumaker grouped an extensive but non-exhaustive list of methods to �ve categories: (a) global interpolation,

(b) global approximation, (c) local interpolation, (d) local approximation, and (e) hybrid (two-stage) methods.

Interpolation methods will construct the function f such that it �ts the data exactly at the given points, while

approximation methods will only approximately �t the data at the same points. All the data points will contribute

to the construction of the function f in global methods, while only the neighboring data points will contribute to

f in local methods. In general, global methods involve solving a large linear system while local methods solve a

possibly large number of smaller systems of equations. Many of the global methods can be made local by partitioning

the data space into smaller subsets and taking care at partition boundaries. Schumaker also recommends the use of

interpolation schemes when the data points are known to high precision and approximation schemes when data are

subject to inaccurate measurements or errors. Below is a short list of methods falling under the di�erent categories:

1. Global interpolation. List includes polynomial interpolation of scattered and gridded data, spline interpolation

of scattered and gridded data, and the Shepard's method for arbitrarily space data.

2. Local interpolation. Triangular and rectangular partitioning strategies over scattered and regular grids.

Parametric representations (e.g. Coon's surfaces). Localized Shepard's methods.

3. Global approximation. Polynomial least squares or multi-dimensional regression, spline smoothing of scattered

and gridded data, and discrete and continuous least squares.

4. Local approximation. Adaptive patch methods and direct local methods or quasi-interpolants.

5. Two-stage methods. An approximation g is calculated from scattered data during the �rst stage which is then

re�ned to the surface f in the second stage. Combinations include interpolation-interpolation, approximation-

interpolation, and approximation-approximation.

Any of these methods can be used, with varying degrees of success, to �ll in the space between sparse data points.

The problem with most of these methods is that few of them take into consideration anything about the dynamics of



the system that they are �tting. Obviously, a domain-dependent or a physically based interpolation method would

provide a more believable picture. The next section describes our problem domain.

3 ENVIRONMENTAL DATA

The application we are interested in is the nowcasting of meteorological and oceanographic events on the scale of

the Monterey Bay.
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In contrast to forecasting, nowcasting is more near term. At the limit, we are interested in �nding

the current picture of the environment based on the limited number of sensor readings.

There are two complicating factors that make this problem more di�cult. The �rst is the spatial scale of the

domain. Unlike global climate modeling or weather forecasting where the focus of interest is in large scale structures,

regional or local models need to resolve the �ne structures that are important at this scale. The second di�culty is

the immediacy of the forecast. We cannot a�ord to run forecasting models into the future when we need to know what

the current situation looks like. In addition, most of the forecasting models require the past or current pictures to

initialize them. There is actually some work in the area of data assimilation which attempts to continuously update

simulation runs with the most recent data gathered from sensors. However, the problem at hand is how does one �ll

in the void of space where there are no measured data? Do scientists sit back and stare at the sparse data and form

some kind of mental interpolation? If so, what kind and can we formalize it?

To understand this process, we also need to know the characteristics of the data as well as the sensors. For example,

some �elds such as pressure tend to be more uniform and vary smoothly over space. Changes to these �elds normally

do not happen suddenly and take time to develop and spread. On the other hand, wind �elds tend to be more erratic.

It can vary from place to place and can change direction and speed at any instant. Thus, depending on the data

�eld, it can be assumed to be either smooth or bumpy. But in all cases, the data is assumed to be continuous and

di�erentiable. These environmental data are obtained from a variety of sensors such as met-stations and buoys which

obtain in-situ measurements. There are also a number of more exotic instrumentations such as vertical wind pro�lers

and codars (which measures the ocean surface current). Measurements of the environment are constrained by battery

supply, limited range/accuracy of equipment, prevailing conditions, drift in equipment calibration, etc. It is therefore

common practice to attach a range or uncertainty factor to a reading.

Thus, the dilemma faced by the scientist is to integrate all these factors into a coherent mental picture of the current

scenario. The task of the visualization specialist is to aid the scientist analyze the data set. At �rst glance, it is quite

easy to generate an interpolated image of the sparse data sets. However, this may contain misleading information

or artifacts that are not present in the data. Furthermore, there are several surface �tting methods to choose from.

Which method provides the best estimate for the particular type of data �eld?

The next section studies two methods as applied to this problem domain in more detail. While the methods can

be extended to 3D, the data are assumed to be located at sea level and hence on a 2D plane.

4 SURFACE FITTING

We study and compare the Shepard's methods

1,3,4

as well as some variations of Hardy's multiquadric methods.

5{7

Both methods have been around for over two decades and used in areas such as topography, geography, meteorology

and computational 
uid dynamics, but are relatively unknown in the visualization community. These two methods

fall under Schumaker's global interpolation category but can also be made local. In the following sections, we present

the descriptions and performance characteristics of both methods on di�erent data sets and sampling distributions.

4.1 Shepard's interpolation

Perhaps the most familiar member of the Shepard's interpolation is the inverse square technique. The idea with

this method is that for each unknown f(x; y) in the �eld that is to be estimated, a weighted average is performed from



all of the known data points F

j

, j = 1; 2; :::; N . The weight contribution of each data point is calculated as the inverse

square of the distance from (x; y) to the data point. Using this rule, a data point will have the strongest in
uence to

the function f around its neighborhood.

Shepard's formulation generalizes the inverse square method to include di�erent powers of distance.
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j
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1=d

u

j

otherwise

(1)

The value of u plays an important role in the shape of the surface specially in the vicinity of the data points. When

0 < u < 1, f(x; y) has cusps at the data points. These cusps turn into corners when u = 1 and 
atten out when u > 1.

3

Another useful property of Shepard's interpolation is that the surface stays within the extrema of the data points.

1

That is, min(F

j

) � f(x; y) � max(F

j

) for j = 1; 2; :::;N . Figure 1 illustrates the behavior of Shepard's interpolation

using di�erent distance power values.
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Figure 1: E�ects of di�erent power values on the

Shepard's interpolation curve.
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Figure 2: E�ects of di�erent c values on the multi-

quadric interpolation curve.

4.2 Hardy's multiquadrics

Another popular interpolation technique for sparse data sets is Hardy's multiquadric interpolation. The interpolated

surface is de�ned by a sum of weighted radial hyperbolic basis functions. This is formalized in the equation below.

f(x; y) =

N

X

j=1

�

j

Q(x; y; x

j

; y

j

) (2)

where the radial basis functions Q are de�ned as:

Q(x; y; x

j

; y

j

) =

q

(x� x

j

)

2

+ (y � y

j

)

2

+ c

2

(3)

c is an input parameter which can in
uence the shape of the surface. Variations on Hardy's multiquadrics arise

primarily from how the basis functions are de�ned. For example, a simple change of removing c, would change the

basis functions from hyperboloids to cones. Equation 2 can be extended to higher dimensions by simply incorporating

the extra dimensions into Q. To solve equation 2, the coe�cients �

j

must be determined by solving a set of linear

equations

F
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= f(x
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j
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Intuitively, larger c values in Q give rise to 
atter basis functions and hence the interpolated surface will also be


atter or smoother. Figure 3 shows two Q basis functions with di�erent c values. Figure 2 shows the behavior of the

multiquadric interpolation using di�erent c values.
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Figure 3: The 
atter Q basis function on top has a larger C = 30 value compared to the c = 10 surface below.

4.3 Evaluation

The two methods discussed above were examined and compared to determine their strengths and weaknesses. To

do this, we developed a test suite of four data sets, a set of parameters for each method, and di�erent number and

distribution of sampling points. The di�erent data sets represent di�erent distributions of data values and are included

to see whether a method performs better for a given type of distribution. These data sets are described in more detail

below. Each method has a free parameter that can be tuned to the range or distribution of data values. We test both

methods using di�erent sets of these parameters values. Varying the number and distribution of sampling points can

greatly in
uence the performance of both methods. Hence, we also study how the methods perform as we vary the

number of sample points.

The test procedures involved sampling each data set with a �xed set of points and guessing the rest of the �eld

based on the values at those points. Then, comparisons are made between the interpolated �eld and the target data

�eld in the form of di�erence images and root-mean-square (RMS) error calculations. Both methods were subjected

to this procedure using di�erent number of sampling points and di�erent interpolation parameters.

Test data

We used four data sets: two were synthetically created while the other two were from numerical simulations. The

synthetic data sets were created from an arbitrary combination of sine and cosine functions. The simulation data

sets come from the NPS-NRL mesoscale model output of a CRAY Y-MP EL98 and centers around California. They

contain 103 (East-West) by 91 (North-South) grid points spaced 1=6 degrees (approximately 18.5 km) apart on a

Mercator projection that runs from 28N-43N and from 130W-113W. We further classify the data sets as smooth or

bumpy. Below is a brief description of each:

1. smooth synthetic: Dimensions: 100x100. f(x; y) = 10sin(

x

10

) + 7cos(

y

7

); x; y = 0::20.

2. bumpy synthetic: Dimensions: 100x100. f(x; y) = 10sin(

x

4

) + 15cos(

y

5

) + 7cos(

1

3

x+

1

2

y); x; y = 0::20.

3. smooth simulation: Dimensions: 103x91. Sea level pressure.

4. bumpy simulation: Dimensions: 103x91. Temperature.

Shepard's interpolation tests

In Shepard's method, each interpolated point is determined by calculating a distance weighted average of all the

sample points available. As can be noted in Figure 1, lower distance power values tend to emphasize the sample



points, while higher distance power values produce smoother approaches near the sample points. It can also be noted

that as the distance power is increased further, the gradient halfway between sample points tend to increase. The

corresponding e�ects on 2D images can be seen in Figure 4. In particular, peaks are noticeable near sample points

for lower distance powers and boundaries between \basins" are noticeable for higher distance powers. Hence, the

sample value becomes the dominant contributor within its basin when the distance power is high. This suggests some

strategies for incorporating uncertainty parameters in the interpolation (see section 5). Figure 5 shows how Shepard's

interpolation performs on di�erent data sets. It also suggests that while using higher distance power values may reduce

the RMS error, using the inverse square may be su�cient for most purposes.

Multiquadric interpolation tests

One can see that as the multiquadric parameter c is increased, the interpolated curves (see Figure 2) become

smoother. However, as c is driven higher, the interpolated curves tend to under or overshoot in the vicinity of the

sample points. This may lead to a higher RMS error as evidenced in Figure 6.

The selection of c depends on two things: (a) the absolute magnitude and (b) the relative magnitude (gradient)

of data values. Typically, one would choose a larger c value for data sets with large values. For example, you would

choose a smaller c if data values range from 0 to 10 than if they range from 900 to 910. However, too high a c value

would also cause the Q function (Equation 3) to be dominated by c. This would in turn cause the matrix, representing

the system of linear equations, to be poorly conditioned. Hence, we have introduced an intermediate step where all

the sample points are shifted down by min(F

j

), the smallest sample value. This allows us to use a smaller c value.

After an interpolated surface is �tted on the down-shifted values, the surface is raised back up by the same amount.

Another important factor in choosing c is the relative magnitude of the sample values. If the ratio of any two

sample values is close to one, then c must be higher than if the ratio was further from one. This implies that smoother

data require higher c values. Figure 8 shows higher c values consistently giving better guesses for the smooth surface.

We can make the same observation when looking at the shape of the Q basis functions in Figure 3. So, sensor values

of 1000, 1050 and 1200 need a much larger constant to produce a comparable surface than if the sensor values were

100, 150 and 300. This is the case, even though the shifted (subtract 900 from each of the larger values) sensor values

have the same absolute magnitudes.

Recall that as c gets larger, the basis function gets 
atter. While this may give us a smoother surface, it also has

the drawback of not being able to handle steep gradients in the data (see Figures 9 and 11). Therefore, the statement

that multiquadrics perform better in medium to steep gradients

6

need to be quali�ed with the need for an appropriate

value of c.

Comparison

We compare the results qualitatively through images in and quantitatively using RMS values. The RMS values

are based on the median of 11 di�erent runs. Each run is uses the same number of sampling points but distributed

di�erently. The median values are used instead of the average since the interpolated surfaces are also very sensitive

to the clustering of the sampling points. The comparisons can be seen in Figures 8 { 11 with the multiquadrics with

appropriate c values doing generally better than Shepard's. These �gures also provide some guidelines for the relative

bene�t of adding more sampling points. Unfortunately, it does not help in telling us where to put additional sampling

points. A qualitative look at the interpolated surfaces (Figures 4 and 7) may help.

The RMS values assign an aggregate score to an entire image but does not say how well the method performed in

local regions near sample points. Looking at the images in Figures 4 and 7 gives us a better understanding of where

the methods obtained a good/poor match in local regions. For example, it is clear that the multiquadrics interpolation

produce smoother images with less artifacts (e.g. basins) than the Shepard's interpolation. Another observation is

that when sampling points happen to cluster near each other, they collectively form a strong weight in that vicinity

using Shepard's. These points act as if they were a single point with many times the weight of the other sampling

points resulting in distorted images. In contrast, output from multiquadric interpolation is more independent from

sampling locations.



Figure 4: Top to bottom: Interpolated (guesses) and di�erence images of smooth, bumpy, pressure and temperature

data sets using Shepard's interpolation. Target (correct) �elds and locations of sampling points are shown on �rst

column. Columns 2-5 use distance power values of 1, 2, 4, 8 respectively.
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5 SURFACE FITTING WITH UNCERTAINTY

Compounding the problem of forming a mental image of the state of the system from a small set of scattered

sampling points, is the fact that values from the samples may not be very accurate. As mentioned in section 3, data

values may be degraded due to sensor range and conditions in which reading was taken. Furthermore, the utility of the

reading may drop-o� rapidly away from the sensor if the �eld is naturally more dynamic (e.g. wind). In this section,

we describe some extensions to Shepard's interpolation that allow data quality parameters to be incorporated.

Data quality or con�dence level has an opposite relationship to uncertainty. When data quality is high, uncertainty

is low and vice versa. One way to incorporate uncertainty into existing methods is to attach a weight to each sample

point. The higher the weight, the stronger the con�dence on the reading. This can be described by the equation below.

f(x; y) =

8
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otherwise

(5)

The relationship above does not include how fast con�dence levels drop-o� with distance. This can be accounted for

by replacing the W

j

's in Equation 5 with distance reduced weights w

i

's described by:

w
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= max(W
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� d
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; 0) (6)

That is, the con�dence of sample j is linearly reduced to zero as we move a distance R

j

away. And the surface point at

f(x

i

; y

i

) is a distance weighted term of the di�erent w

i

's. Note that instead of the linear drop-o� in con�dence level,

the drop-o� could be modeled some other way.

Yet another way of incorporating uncertainty into the surface is by allowing the surface to be \lifted" or \lowered"

in places where the certainties are not 100%. This would allow a surface to interpolate perfect sample points and only

approximate imperfect sample points. One such function is described below, and its e�ects can be seen in Figure 12.

1=(d

u

j

+ U ) (7)

Notice that when the uncertainty term is 0, this reduces to Shepard's distance weights. However, as U increases to

in�nity, the contribution of F

j

drops to 0. We relate the uncertainty term U to the weight W using a reciprocal

relationship: U =

1�W

W

(see Figure 12). Note that to be e�ective, the value of U must be comparable to the value of



Figure 7: Top to bottom: Interpolated (guesses) and di�erence images of smooth, bumpy, pressure and temperature

data sets using multiquadric interpolation. Target (correct) �elds and locations of sampling points are shown on �rst

column. Columns 2-5 use constant c values of 10, 30, 100, 300 respectively.
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d

u

. Since the distance terms will be proportional to the dimensions of the entire surface, we use a modi�ed version for

the images in Figure 13. For images, we use U = Xdim(

1�W

W

).

The three strategies for including uncertainty and drop-o� rates are interchangeable. Figure 13 compares three

combinations using power u = 4: (a) Equation 5, (b) Equation 7, and (c) combination of the two (i.e. W

j

=(d

u

j

+ U )).

The bottom row shows the same surfaces with uncertainty but with a grid in the background. The interpolated weight

surface is mapped to transparency such that areas with higher con�dence cover the grid better than areas with lower

con�dence levels. Speci�cally, the amount of transparency at location i is determined by: t

i

= 1�max(w

i

) over all N

sampling points. This allows areas where no information is available or where the con�dence level is zero to be become

transparent.

Figure 13: Surface �tting with uncertainty. Interpolated surfaces use distance power 4. Columns show the target,

standard Shepard's, weights using Equation 5, weights using Equation 7 and combined U and W weights respectively.

The drop-o� distances R and the weights W of the sampling points are increasing from left to right, bottom to top.

The bottom row maps uncertainty to transparency. Areas where the grid shows through are places where uncertainty

is higher.

6 CONCLUSION

The dilemma facing scientists who need to do nowcasting, is �nding a physics based interpolation model suited for

a particular scale and locality. In its absence, the problem is which interpolation method to use and which results to

believe. This paper studied and compared two popular interpolation methods used with sparse, scattered data sets.

Based on the qualitative results, users will hopefully become more aware of each method's behavior and potential

surface artifacts. Between the two methods, multiquadric interpolation gives better performance when provided an

appropriate c value.

We have also introduced slight modi�cations to the Shepard's method to account for uncertainty and drop-o� rates.

Some displays using transparency to represent the level of con�dence in data are also presented.
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