
CSpray:

A Collaborative Scienti�c Visualization Application

Alex Pang, Craig M. Wittenbrink and Tom Goodman

Baskin Center for Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

We present the design and implementationof Collaborative Spray or CSpray (pronounced \sea spray"). CSpray

is a CSCW (Computer Supported Cooperative Work) application geared towards supporting multiple users in a

collaborative scienti�c visualization setting. Scientists are allowed to share data sets, graphics primitives, images,

and create visualization products within a view independent shared workspace. CSpray supports incremental

updates to reduce network tra�c, separates large data streams from smaller command streams with a two level

communication strategy, provides di�erent service levels according to client's resources, enforces permissions for

di�erent levels of sharing, distinguishes private from public resources, and provides multiple fair and intuitive
oor

control schemes for shared objects. O� the shelf multimedia tools such as nv and vat can be used concurrently.

CSpray is based on the spray rendering visualization interaction technique to generate contours, surfaces, particles,

and other graphics primitives from scienti�c data sets such as those found in oceanography and meteorology.

Keywords: computer supported cooperative work, collaboration, scienti�c visualization, spray rendering,

oor control, session management.

1 INTRODUCTION

Recent developments in teleconferencing allow geographically separated colleagues to discuss ideas using voice

and video in real time. There are many systems designed to support multimedia interaction among users

1{7

or study the mechanisms behind multimedia interaction. However, with a few exceptions, most visualization

systems to date still operate in single-user mode. With single-user tools, visualizations are created from one

graphics workstation. Users may run remote modules, for example on a supercomputer, but they do not interact

with other users in the creation of the visualization products. In contrast, extending single-user visualization tools

into collaborative scienti�c visualization settings allow multiple investigators to share data, views, manipulation

sequences and to participate in the creation of the visualization products across the network.

Designing a system for collaborative scienti�c visualization requires a new look at what it means to visualize

data by groups. There are many new design issues, including the user interface, authorization levels on data, and

users' control. This paper reports our new solutions for a scienti�c collaboration environment that provides:

� Synchronized workspaces for group generated visualizations.

� Private workspaces for visualizations generated independently of a collaboration group.

� Local data integrity, protection, and independence from the collaboration.

� Resource allocation, such as decompression, graphics rendering, and routing.

� Reliable and unimposing
oor control schemes to manage access to shared resources.

� A user-interface (UI) that reduces problems of screen clutter, and clearly shows: participants (who is where),

activity, and ownership (who is controlling what).

2 COLLABORATIVE SPRAY RENDERING (CSpray)

CSpray stands for Collaborative Spray rendering and is an extension of Spray, a visualization application,

into a collaborative environment. We �rst give an overview of Spray. We then discuss the changes necessary to

support a collaborative visualization environment.

2.1 Spray rendering

Spray rendering

8,9

is a framework that we and our colleagues have developed for visualization which uses a

spray can metaphor; cans are �lled with smart paint particles (sparts) that are sprayed into the data to highlight

interesting features. Features are displayed when sparts become activated and leave visualization objects in their

path. These visual objects may be lines, polygons, spheres, and other graphics primitives that delineate the data

set under study. Collectively, these are called abstract visualization objects (AVOs).

Users have control over several parameters. To aid in the delivery of sparts into the data space, users can

adjust beam focus, can position, and direction. The number of sparts delivered per dose, their spatial distribution,

and whether the can is in probe mode (AVO present only where can is pointing) or normal spray mode (AVOs

stick around) can also be speci�ed. Other parameters such as sparts' paths, lifetimes, colors, and types of AVOs

can all be customized as part of the spart's de�nition.

Figure 1 shows the e�ects of spraying several cans in di�erent directions to extract an isosurface, a dust cloud,

and stream vectors from a test data set. The currently selected spray can is in the upper right of the window,

and looks like a shaving cream can with a rod coming out of it. At the end of the rod is a sphere which indicates

the center of view of the can. The view from that can is shown in the smaller graphics window in the lower left.

Spray deals with a streams oriented application programming interface (API) to retrieve data from remote

database servers. The API can also handle event streams from user interactions and output streams of AVO

visualization products. The stream interface is quite
exible and can be used to record animations as AVOs are

generated or can be used to play back a session by recording the event streams. With slight modi�cations, we

also use the same API for transfer of events, requests, data, AVOs, and images among collaborators in a CSpray

session.

2.2 Components of CSpray

Several modi�cations were added to Spray in order for it to support collaboration. In CSpray, several users

in a visualization session may analyze a set of distributed data by creating spray cans loaded with sparts. Sparts

are tied to one or more local or remote data sets. Spray cans may be made public or kept private. Public cans are

visible and accessible by other participants. Participants can see the spraying action of other users in their local

window. More than one participant may be spraying at any given time. Once in a while, the attention of the

entire group may be directed at what one of the participants is doing. Participants may also join and leave the

session at any time. Figure 2 shows the schematic local view of a CSpray participant and the eyes representing

two other collaborators, a spray can, and a couple of visualization objects.

Starting CSpray

CSpray may be started in standalone or collaborative mode. In standalone mode, CSpray behaves like the

single-user application Spray. In collaborative mode, CSpray passes relevant information to and from other

participants and maintains a dynamic list of active participants.

Spray cans and Permissions

Spray cans contain sparts that are associated with one or more data streams. Therefore, other participants may

be allowed indirect access to local data through the AVOs generated by using those spray cans. To accommodate

participants who wish to limit access to some of their local data, we di�erentiate private and public spray cans.

A can is private by default. Once the creator decides to make it public, the can and its AVOs becomes visible to

all other participants. Participants can then take turn to grab, manipulate, and spray the can. Deletion of public

cans is allowed only by the creator and owner(s) of the data stream(s) tied to the spray can.

Thus, each user's shelf of spray cans consists of their own private can collection and a common public can

collection. The use of a public spray can is translated into requests to the host machine that owns the can to

generate and send the appropriate AVOs. It is also possible for a spray can to have multiple data streams from

di�erent hosts. In that case, can use implies requests to several remote hosts for access to di�erent data streams.

CSpray has one additional public can type that is used as a 3D remote cursor. This pointer can indicates

interesting features to another person in the shared workspace. Pointer cans resemble spray cans except they

have no input stream.

Floor Control

All objects that are public may potentially be grabbed by more than one participant. Therefore,
oor control

or some means of regulating who has control on a public object, is necessary to avoid contention. In CSpray

public spray cans and pointer cans are examples of public objects. Whoever has the
oor on a public can may

grab and spray (or point) it. The
oor control for a can is handled by timed release where the can is free to be

grabbed after a certain amount of idle time. Other alternatives investigated included explicit release, where the

current holder needs to acknowledge/deny requests for a can; and explicit control where the holder has the can

only while holding down some combination of keys or mouse buttons.

Objects under
oor control will always be in one of four states { free, owned (by local user), taken (by another),

and requested. Public cans are labeled with the can's current controller, unless the can is free, in which case there

is no label. (In CSpray private cans are labeled private and they are always in the owned state). We color code

the labels and the cans with red, yellow, and green (analogous to a stop{light) to represent the states: taken,

requested, and mine.

Figure 1: Spray rendering workspace showing e�ects of di�erent types of smart particles (sparts). Users control

viewing, can position, can orientation, and spraying through either graphics window. The lower left graphics

window shows the view from the current can.

Figure 2: Schematic of a local view from CSpray showing Tom's and Peter's eyes, some visualization objects, and

a public spray can.

If the can is taken or owned and then someone requests control of the can (by clicking on the can or selecting

it from a menu of available cans, the can becomes requested. This alerts the controller that someone wants control

without necessarily forcing them to give it up immediately. Another option that is also available is to force
oor

release if someone is keeping a requested object for too long.

Eyecons

Eyecons represent the presence and position of other participants in a session. They are literally modeled as

oating eyeballs as shown schematically in Figure 2 and operationally in Figure 4. The eyecon is labeled with

the login name of the participant for easy identi�cation.

Public View Window

CSpray has an additional popup graphics window (Figure 4). We refer to this new window as the public

window and to the main graphics window (Figure 1) as the private window. Normally, users see the world from

their own perspective. However, once in a while, they may want to look over their neighbor's shoulder and snoop

on what the neighbor is doing. By clicking on an eyecon or by explicitly selecting a participant's name from a

dynamic Views pulldown menu, a user speci�es the person whose view will appear in the public window. The

view from that eyecon (excluding all private objects) is then displayed in this public window. Information to

generate the remote views are transferred through streams. Thus, changing views is simply a matter of changing

stream connections.

The public window is commonly used in brie�ng mode. This is where the group's attention is focused on a

single presenter's view and actions. Observers will all select the presenter's view. The presenter may wish to

select his own name from the views menu, allowing him to observe what others are viewing { his own public

view. This view is useful to the presenter, since it visually con�rms which objects are public (visible) and which

are private (invisible). You can let other participants know that you want to show them something in the public

window via available audio tools such as vat

10

.

Limiting Network Tra�c and Visual Clutter

Permission allows or prevents other members from spraying into your window. This controls whether you want

to receive the AVOs generated by a particular can. By default, private cans do not send their can orientation,

movements, or AVOs to other participants' private or public windows, while public cans send this information to

both windows. Currently, CSpray allows the local user to toggle on and o� the viewing of any can (private or

public) and its AVOs. This provides a quick way to reduce clutter in the workspace. In a networked environment

with di�erent levels of service, a participant may be a particularly slow node. Users may toggle the AVOs from

other users on or o� to improve interaction time. Built in
ow control and varying rendering update rates are

also used to match participants capacities.

Sharing

CSpray allows participants to create visualization products through data sharing. This happens at the data

level, AVO level, or image level. As permissions allow, optimizationsmay take place transparent to the application.

Data streams access is a remote �le or database access. Therefore, stream connections are given only to clients

with su�cient network bandwidth. Data replication at di�erent sites provides higher interactive performance after

an initial data transfer. However, if the data is private or is constantly changing, the raw data is not distributed,

and only the AVOs are shared instead. Since the number of AVOs can be quite large, only the newly created

AVOs are broadcasted. In addition, di�erent levels of rendering and network capabilities require applications to

adjust their interactive performance by switching from sending AVOs to sending rendered images. Users still

grab and use cans, but they are simply getting rendered images as opposed to a list of AVOs or replicated data

streams.

Joining and leaving a session

Participants can join a session at any time. When joins occur, the current state of AVOs, users and viewpoints,

public spray cans, and stream attachments are transferred to the new participant. Information about the new

participant is also announced to the other session members. CSpray supports these functions for bringing late

comers up to date on what has occured. Participants may join a session as a fully active and contributing member

or as a passive observer.

Just as users may join at any time, they may also leave at any time. Leaving a session requires coordination

with the CSpray clients to disengage data sets, cans that were controlled by the users, and giving up
oor control

for other objects.

3 DESIGN AND IMPLEMENTATION OF CSpray

Session management and
oor control functions are implemented in the application itself, making it collaboration-

aware.

3.1 Architecture of CSpray

CSpray uses a symmetrical client server collaboration model. Each collaborative host runs a local copy of

CSpray. BSD (Berkeley Software Distribution) UNIX sockets are used for network communication. Two sockets

are opened to every collaborator. A reliable TCP/IP (transmission control protocol/internet protocol) socket is

used for control information, and another socket is used for transmission of data and positional update events.

Among comparably equipped collaborators, CSpray transmits geometric data (AVO) to all participants. This

method makes use of each machine's power to process data and display images, unlike in a strict client server

model. By only sending the AVOs, collaborators are able to keep their individual data private. This allows

scientists to share the results of their visualizations without granting full access to the raw data. Since the data

need only exist on one collaborating host, there is no further concern for tracking updates of multiple copies of

data �les.

Unlike in the framebu�er data transmission method, another bene�t of this model is that it allows each

participant to view the data independently, from any perspective, without requesting additional information from

the host where the data is stored. This is possible because the view-independent AVOs resides on every host.

By transmitting a participant's view matrix, views can be shared with all participants. With the framebu�er

method, this would require compressing and transmitting the entire framebu�er, instead of the 4x4
oating point

value view matrix. Of course, frame only clients are used for workstations or X-stations with insu�cient rendering

speed.

3.2 Session management

CSpray provides very limited session management, supports late comers, and maintains the session list ex-

plicitly. This is done with a linked list data structure called collab-list which maintains a list of users in

the session. Each record in the collab-list contains a collaborator's name, process identi�er, host name, viewing

location, and viewing orientation. These information allow CSpray to uniquely identify each participant in the

session. This identi�cation is contained in every packet transmitted and is necessary when events are received to

determine who has sent the event. The viewing information is used to determine eyecon locations and when one

participant wishes to track another participant's view.

3.3 Floor control

In CSpray, the
oor management is locally static because the ownership of, for example, a spray can always

resides on the same machine where it was created. Alternatively, other participants can grab the
oor of the

spray can and move or manipulate it, hence it is also distributed. Each
oor manager knows how to broadcast

messages to all participants that have permission to receive data.

We distinguish between the
oor manager and the
oor controller. The manager creates shared objects and

holds the data. Control is temporarily granted to any connected collaborator who requests to work on the public

data. The default controller is the manager. Every shared object, at any point in time, has a manager and a

controller and if nobody requests the
oor the last controller maintains the
oor until it is requested or a timer

has elapsed.

Rather than having one host which manages all the cans, each version of CSpray can manage a set of cans.

This distributed
oor management scheme avoids consulting a central host for every
oor control transaction.

We believe distributed control provides greater scalability and fault tolerance since it distributes network tra�c

and
oor control responsibilities. Figure 3 shows a
ow diagram for the
oor manager scheme for CSpray.

3.4 Streams and events

Events in CSpray are handled by a message passing paradigm whereby messages are distributed to the various

modules within a local host as well as sent to and received from collaborating remote versions. We treat a

sequence of events as streams with handles that CSpray controls and redirects according to the requirement and

classi�cation of the event. Events may be local and therefore non-collaborative or they may be collaborative. The

latter type may or may not require
oor control. Collaborative events requiring
oor control include use of public

resources like public spray cans and pointers. When one changes eye point location, this generates a collaborative

event which does not require
oor control (since no one can force anyone else to move). It is collaborative, because

the new location must be broadcast to other participants so eyecon locations can be updated. CSpray's input

and output streams are redirected to choreograph the collaboration.

4 COMPARISON WITH RELATED WORK

The main di�erence between prior work (e.g. CECED

11

, SHASTRA

12

, HIGHEND

13

, BERKOM

14

, Tempus

fugit

16

, Klinker

15

, and Collage

17

) and our design approach is that our system supports scienti�c collaboration

Noncollab
 request

Allow
collab?

Y

N

Wait response

Remote
accepts?

Y

N

Send register
Receive

request

reply with

register

Receive environmentSend environment

User
leaves

N

Y

Collab modeUpdate Host

 N

Y

N

floor?

Broadcast

Allow
collab?

Y

Assign/maintain floor.

environment

new data/floor

Note: all "terminal" nodes return to collab-mode node.

New/delete Create/rm floor
update

Reject request

Floor
free? Y

N

Am I
floor manager?

Collaboration establishment

request
Ignore/forward

Receive register request

Last collab
user?

Y

Receive floor event
events

Non-floor

 Distributed static floor manager with implicit floor release

Receive update

reply
N

rejection

Reply
rejection

Figure 3: Distributed static
oor control management for CSpray.

Figure 4: CSpray workspace in a two person collaboration. The left window shows the local view, while the right

window shows the remote participant's view. Note the remote participant's eyecon in the local view.

with distributed data sets. In contrast, prior work has focused on either using single-user collaboration-unaware

applications or developing collaboration-aware applications and tools that exchange simpler streams such as video,

audio, white board or pixel maps. CSpray provides support for collaborations with AVOs and also supports new

collaborative interactive objects such as eyecons, shareable spray cans, name labels, intuitive
oor control, and

the protocol for exchanging packets describing all of these objects and their movement.

5 SUMMARY AND CONCLUSIONS

We presented the design issues and identi�ed the components of an integrated collaborative scienti�c visualiza-

tion software application. Participants in CSpray can collaborate and interactively create visualization products.

CSpray's new visualization collaboration features are: allowing scientists to indirectly share data and still main-

tain exclusivity, recording session activities for playback and review, and providing clear handles through eyecons

and spray cans for being aware of and interacting with remote users independent of audio and video tools. CSpray

is a collaboration-aware implementation where permissions are enforced on di�erent levels of sharing.

Additional enhancements currently under development include: matching service levels according to client's

resources; compression of visualization streams; porting AVO handling routines to OpenGL for non-SGI platforms;

and supporting clients without hardware rendering. Details and updates can be found in our world wide web site

under the REINAS research project

18

.

ACKNOWLEDGEMENTS

We would like to thank those who helped develop Spray including Naim Alper, Je� Furman, and Elijah

Saxon. Inputs from J.J. Garcia-Luna and Peter Dommel on session management and
oor control are also

gratefully acknowledged. We would also like to thank those scientists whose input and needs have helped to drive

the development of Sprayand CSpray, including Bruce Gritton, Professor Wendell Nuss, Dr. Paul Hirschberg,

and Professor Je� Paduan. This work is funded in part by ONR grant N00014-92-J-1807.

6 REFERENCES

[1] S. A. Bly, S. R. Harrison, and S. Irwin. Media Spaces: Bringing people together in a video, audio and

computing environment. CACM { Special Issue on Multimedia in the Workplace, 36 No. 1:28{44, January

1993.

[2] M. A. Ste�k et al. Beyond the chalkboard: Computer support for collaboration and problem solving in

meetings. In Computer Supported Cooperative Work: A Book of Readings, pages 335{366. Morgan-Kaufman,

1988.

[3] K. A. Lantz. An experiment in integrated multimedia conferencing. In Computer Supported Cooperative

Work: A Book of Readings, pages 533{556. Morgan-Kaufman, 1988.

[4] S. Sarin and I. Greif. Computer based real-time conferencing systems. In Computer Supported Cooperative

Work: A Book of Readings, pages 397{420. Morgan-Kaufman, 1988.

[5] W. H. Mans�eld Jr. K, C. Lee and A. P. Sheth. A framework of controlling cooperative agents. IEEE

Computer, pages 8{16, July 1993.

[6] S. B. Wilbur. Dimensions of sharing in multimedia desktop conferencing. In IEEE Colloquium on CSCW:

Computer-Supported Cooperative Work, pages 4/1{4, 1990.

[7] H. Smith, S. Benford, H. Howidy, and A. Shepherd. The GRACE project: towards large scale group

communication systems. In IEEE Colloquium on CSCW: Computer-Supported Cooperative Work, pages

5/1{4, 1990.

[8] Alex Pang and Kyle Smith. Spray rendering: Visualization using smart particles. In Proceedings: Visualiza-

tion '93, pages 283 { 290. IEEE Computer Society, 1993.

[9] Alex Pang and Naim Alper. Mix&Match: A construction kit for visualization. In Proceedings: Visualization

'94, pages 302 { 309. IEEE Computer Society, 1994.

[10] M. Macedonia and D. Brutzman. MBone provides audio and video across the internet. CACM, 27, No.4:30{

36, April 1994.

[11] E. Craighill, R. Lang, M. Fong, and K. Skinner. CECED: A system for informal multimedia collaboration.

In Proc. of the ACM 1993 Multimedia Conference, Anaheim, CA, August 1993.

[12] V. Anupam and C. Bajaj. Collaborative multimedia scienti�c design in SHASTRA. In Proc. of the ACM

Conference on Multimedia Systems, pages 447{480, August 1993.

[13] H.-G. Pagendarm and B.Walter. A prototype of a cooperative visualization workplace for the aerodynamicist.

In Proc. of the Eurographics'93, volume 12, No. 3, pages 485{508, 1993.

[14] M. Altenhofen et al. The BERKOM multimedia collaboration service. In Proc. of the ACM 1993 Multimedia

Conference, pages 457{462, August 1993.

[15] G. Klinker. An environment for telecollaborative data exploration. In Proc. of the IEEE Conference on

Visualization, pages 110{117, 1993.

[16] M. J. Gerald-Yamasaki. Cooperative visualization of computational
uid dynamics. In Proc. of the Euro-

graphics'93, volume 12, No. 3, pages 497{508, 1993.

[17] National Center for Supercomputing Applications. NCSA-collage. World Wide Web, URL:

http://www.ncsa.uiuc.edu/SDG/Software/XCollage/collage.html, 1994.

[18] REINAS. Real time Environmental Information Network and Analysis System. World Wide Web, URL:

http://www.cse.ucsc.edu/research, 1994.

