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Abstract

This paper proposes the use of specially generated 3D

procedural textures for visualizing steady state 2D flow

fields. We use the flow field to advect and animate the tex-

ture over time. However, using standard texture advection

techniques and arbitrary textures will introduce some unde-

sirable effects such as: (a) expanding texture from a critical

source point, (b) streaking pattern from the boundary of the

flow field, (c) crowding of advected textures near an attract-

ing spiral or sink, and (d) absent or lack of textures in some

regions of the flow. This paper proposes a number of strate-

gies to solve these problems. We demonstrate how the tech-

nique works using both synthetic data and computational

fluid dynamics data.
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points, texture advection, animation, vector field.

1 INTRODUCTION

It is hard to avoid staring at the dynamic motions of char-

acters, objects, or almost anything else that moves in an an-

imated scene. Our attention span seems to last longer when

watching a video than watching a set of static presentation

slides. Recent advances in computer graphics and imaging

research have introduced many animation techniques that

are based on flow advection [5, 7, 8]. These techniques al-

low effective visualization of the flow trajectory by observ-

ing the movements and distortions of the textures. However,

most of them assume simple flow behaviors. In a compu-

tational fluid dynamics (CFD) simulation, it is common to

produce data sets with very complex flow patterns. Some

of these include: saddles, repelling nodes, repelling spi-

rals, attracting nodes, attracting spirals, and centers (circu-

lar flows). Using conventional texture advection techniques

to animate these types flow may create undesirable artifacts.

A simple method for animating a 2D flow using texture

advection can be described as follows: Consider an input

image and a velocity field defined over the image. Let n+1

be the total number of time steps in the animation, then for

each time step t

i

, where i = 0; : : : ; n, advect every pixel

backward from time t
i

to t

0

and save the morphed image

M

i

. To animate the flow, simply playback the saved im-

ages M
i

for all time steps. This texture advection method

will work for most flow fields. However, when there are

repelling nodes or repelling spirals in the flow, then unde-

sirable artifacts can be seen. In flow topology, a repelling

node is known as a critical point that generates a star-like

outward flow pattern while a repelling spiral is another type

of critical point that generates an outward swirl flow pattern.

For both types of critical points, the flow would appear to

be repelling away from the critical point during flow anima-

tion. Hence, they are also known as source critical points.

Once the texture at a source critical point is advected,

what texture should be used for the next advection at that

critical point? Since the flow is being repelled away from

the critical point, there is no new texture available! With

a texture advection method such as the one just described

earlier, one would see an expansion of the original texture

color from the source critical point; thus, creating an unde-

sirable artifacts. This artifact can also occur at the image

border where there are incoming flows. Analogously, the

problem is that once the original texture at the border has

been advected forward, what texture should be used next at

the border? Here the artifact is caused by an expansion of

constant texture from the border. Figure 1 shows a time se-

quence of animating 2D flows using the texture advection

method described above. The left image shows the input

texture image. As we step forward in time, we can see the

artifacts generated by the source critical point located near

the lower-right of the image. The constant bands of texture

from the upper-left border of the image are caused by the

inflow from the border.

One may consider using periodic textures to feed in tex-

tures from the other side as soon as a backward integrated

streamline hits a boundary. However, the underlying cause

of these artifacts can be attributed to the absence of flow

information to guide the texture selection. For the case of



(a) Time Step 0 (b) Time Step 5

(c) Time Step 10 (d) Time Step 20

Figure 1. A time sequence of animating 2D

flows using texture advection. Artifacts of

constant texture due to the source critical
point located on the lower right portion of the

image and the constant texture bands from

the upper left border due to inflow.

inflow from the border, we do not have flow data to deter-

mine the next position of the streamline when it is integrated

backwards. Likewise, for a source critical point, the back-

ward integrated streamline always arrive at the same point.

Hence, the artifact of expansion from a single texel. In our

earlier work, we proposed an alternative method to texture

advection, based on streamline cycling, to alleviate these

artifacts [3]. In this paper, we introduce a technique for

eliminating these artifacts using the more traditional texture

advection method in conjunction with procedurally gener-

ated textures that appear more continuous. We also propose

two texture patterns that are ideal for animating 2D flow

fields. Finally, we apply our techniques to two real world

flow data.

2 FLOWS FROM BOUNDARY

Assume that a steady state vector function ~

V (p) is de-

fined for all position p in the image grid G and t 2 [t

0

; t

n

℄,

where n + 1 is the total number of time steps in the ani-

mation. For texture advection, each pixel in the image is

considered as a massless particle. To create an animation,

we integrate backwards to determine where the particle at

p might have come from. We then sequentially transfer the

textures over the path of the particle to p.

The path of particle at p can be computed by numerically

integrating the vector function ~

V (p). Since we are dealing

with steady flow fields, we can treat the animation time at t
i

as our integration time at t
k

. That is, t
k

= t

i

. Let t
k

be the

current time step, p
0

be the initial particle position for each

pixel, and initially, k = 0, then the particle can be advected

backwards from t

k

to t
0

using a second-order Runge-Kutta

integration with:

K = �h

~

V ( p

k

)

p

k+1

= p

k

� h

~

V ( p

k

+

K

2

)

t

k+1

= t

k

� h and k = k + 1; (1)

where h is the integration step size and 0 < h < 1. The

texture at p
0

is then replaced by that at p
k

to generate an

animation frame for time t
k

. We referred to the texture at

p

k

as the replacement texture. To generate an animation

sequence of morphed images that depict the flow described

by ~V (p) the texture advection algorithm is performed for all

t

i

, where i = 0; : : : ; n. At each time step, if the integration

ends prematurely, t
k

> t

0

in Equation 1, then the particle

has either reached the boundary or it has reached a critical

point, where the velocity is zero. Again, note that for the

case of steady flow, we can freely interchange t
k

and t
i

.

Suppose that the particle has reached the grid boundary,

then two straightforward methods to determine the replace-

ment texture for p
0

are as follows: (1) let the replacement

texture be that at p
k

where the integration ends; and (2) as-

sume a periodic boundary condition such that the particle

is wrapped around to the “opposite” side of the boundary.

Both methods will produce undesirable artifacts. The first

method would cause constant texture bands to flow into the

image from the border, while the latter would cause inco-

herent textures to feed into the image from the border.

Ideally, we want to have a continuous texture to feed

from the boundaries of the grid as time progresses. We

found that the most effective method is to define a 3D proce-

dural texture function T (u; v; w) and compute the replace-

ment texture on the fly whenever the particle integration

ends. In Section 4, we will describe the texture function

T in more detail. For now, we assume that the function T is

given.

We determine the coordinates (u; v; w) of the 3D texture

function based on the last position p
k

where the integration

ends and on the current t
k

at the end of the integration. Let

u =

p

k

x

M

and v =

p

k

y

N

; where M and N are the image di-

mensions. If the particle integration ends prematurely, then

we let w =

t

r

t

n

, where t
r

is the remaining number of time

steps that were not integrated i.e. t
r

= t

k

� t

0

. Otherwise,

we let w = 0 for all particle integrations that ends success-

fully. We can think of the texture function T being defined



in a unit cube and when the integration ends prematurely,

we simply step into the cube along the w axis by a depth of

t

r

. Otherwise, we use T (u; v; 0) as the replacement texture.

Figure 2(a) illustrates this method.

3 FLOWS FROM REPELLING NODES

Here we are interested in generating flow textures from

source critical points such that the physical flow behavior

surrounding each critical point is clearly depicted. For this

type of critical point, we want new textures to flow out of

the critical point. We propose two approaches to generate

such flow textures.

The first approach is based on the method described in

the previous section for providing continuous texture feed-

ing from the grid boundary. During particle advection,

when the particle reaches the critical point, we determine

the last position p

k

(which most likely would be the crit-

ical point) and t

r

, the remaining time steps to be inte-

grated. Then, we compute the coordinates of (u; v; w) of

the 3D procedural texture based on p
k

and t
r

. Though this

approach would provide continuous texture being emitted

from the source critical point, it will also produce concen-

tric ring-like textures surrounding the critical point as time

progresses. Figure 3 depicts the ring-like flow textures gen-

erated from the source critical points. Consider a group

of particles that are at some equal distance from a source

critical point. As these particles are traced backward, they

would all reach the critical point at the same time. Hence,

all would have the same replacement texture. Since this

group of particles form a circle, we would get an expanding

circular ring over time.

One may consider the ring-like texture patterns some-

what realistic because if one throws a pebble into a pool

of water, one would see waves of rings from the position

where the stone hit the water. However, the texture pat-

tern does not really give the impression of the flow direc-

tion from the source critical points. Therefore, we propose

another approach that achieves this effect. For the last posi-

tion p
k

, where the particle terminated, we step into the cube

by a depth of t
r

and then radially outward in the incom-

ing direction of p
0

. Figure 2(b) illustrates this method. Let
~

D denote the incoming direction and ~

D =

p

0

�p

k

jjp

0

�p

k

jj

, then

we let u =

jp

k

x

+ R�D

x

j

M + R

, v =

jp

k

y

+ R�D

y

j

N + R

, and w =

t

r

t

n

,

where R is a predefined constant. To keep the values of

u and v between zero and one, we use the absolute value

in the numerator because ~

D can be negative. With this ap-

proach, we were able to replace the ring-like effect on the

animation with flow textures that radially emanate from the

source critical points. Figure 4 depicts the results of this

approach with R = 180.

(a)

(b)

(c)

Figure 2. When particle reaches the bound

ary as shown in (a), the replacement texture

is determined by stepping into the cube by a
depth of t

r

. If the particle reaches a source

critical point as shown in (b), then the replace

ment texture is determined by stepping into
the cube a depth of t

r

and then radially out

ward in the ~

D direction. (c) depicts an al
ternative method where we advance into the

texture volume as we advance our animation

or integration, and does not require special
handling of boundary inflow and source crit

ical points.



(a) Time Step 0

(b) Time Step 5

(c) Time Step 10

(d) Time Step 20

Figure 3. Flow data with one source critical

point on the lower right and a sink critical

point on the upper left. This time sequence
depicts concentric ringlike texture patterns

coming out of the source critical point.

(a) Time Step 0

(b) Time Step 5

(c) Time Step 10

(d) Time Step 20

Figure 4. Flow data with two attracting nodes

on the upper half and two repelling nodes on

the lower half. This time sequence depicts
flow textures emitting from the source critical

points in the direction of the flow. The re

placement texture is computed based on the
method illustrated in Figure 2(b).



4 PROCEDURAL TEXTURE DESIGN

There are several issues and parameters to consider in

designing textures for flow visualization. Poorly designed

textures will create problems such as: (a) over-crowding of

textural patterns particularly near attraction basins, and (b)

lack of textural patterns in high shear regions. These can be

addressed by first selecting a suitable spatial frequency of

the textures to fit the complexity of the flow patterns. Over-

crowding and absent of textures can be fixed by aging older

textures and constantly introducing new textures. That is,

we use 3D textures for 2D flow fields. Care must also be

taken to balance the spatial frequency of the textures ver-

sus the temporal frequency so that the appearance of the

advected textures does not alter the apparent speed of the

flow.

We experimented with two types of solid textures. In

both cases, the goal was to produce a cloud-like texture

such that when it is advected and distorted, it would pro-

duce a wispy and fuzzy appearance of cloud being blown

by wind. The first one is based on procedural textures as

described in pages 155 and 156 of [1]. This technique uses

a turbulence function to produce random looking clusters

of various sizes and distributions. The texture value at any

point can be quickly calculated on the fly and one does not

need to store the 3D texture. Examples using this texture

can be seen in Figures 3 and 4. However, one has little con-

trol over the distribution of the texture values, and in our

application, may exacerbate the problem of over-crowding

or under-population of advected textures over time.

The second technique creates 3D textures by populating

a volume with spheres. The parameters include average size

of the spheres, average distance between spheres, and how

the texture varies within a sphere. We use a poisson disk

distribution to maintain a minimum average distance among

the spheres. For each sphere, we vary the texture value from

1.0 at the center to 0.5 at the surface. This helps produce

softer fuzzy spheres.

In generating the 3D textures, we note that one must take

into account both spatial and temporal scales of the flow

data. That is, the patterns in the texture must not be too

large so that it misses the flow pattern. For example, if the

texture consists of one very large sphere and the flow con-

sist of numerous critical points, then the advected texture

will not be able to effectively reveal the nature of the flow.

Likewise, the patterns in the texture must not be too small

so that it quickly disappears and fades without showing the

flow pattern. With regards to temporal scales, the patterns

should not vary too slowly or they linger around too long in

the animation and create over-crowding of textures; neither

should they vary too fast or they become distractions that

make the animation blink with very short lived flashes. Fig-

ure 5 depicts a time-sequence from the animation of three

rotating vortices. In the animation, we advance into the tex-

ture volume as illustrated in Figure 2(c). In Figure 5(a), the

undistorted spheres in the texture are shown. In (b), we start

to see the distortion of the spheres caused by two rotating

vortices near the upper right and lower left of the image. In

(c), the texture distortions caused by central vortex is also

apparent. Finally, in (d), the effects of the three vortices

on the texture are shown. In addition, there are two saddle

structures located near the upper left and lower right of the

image.

Using the sphere texture volume, we found the animation

generated by advancing into the texture volume at each time

step (Figure 2(c)) is more sensitive to the size and number

of spheres in the volume. We had to experiment with several

sphere sizes to obtain an animation that effectively revealed

the flow. On the other hand, the frequency scales included

in the solid textures based on turbulence functions seemed

to be more robust.

Currently, we generate our textures based on trial and er-

ror, and do not yet have a systematic nor heuristic method

for automatically determining the appropriate spatial and

temporal scales given a flow field. The scales obviously

will depend on the magnitude and complexity of the flow,

and we plan to pursue an investigation on how to generate a

flow dependent texture for animation.

5 RESULTS

We now describe some results of applying the proposed

techniques on two CFD data sets. The first data set is the

first time step of a cross section of flow around an oscil-

lating airfoil. A good background description of the data

can be found in [4, 6]. The second data set is surface flow

information on a hemisphere cylinder. Alternative ways of

visualizing this data set can be found in [9, 2]

Figure 6 shows four frames of our flow animation us-

ing texture advection. In (a), we see the geometry of the

wing profile, how the procedural texture looks like before

it is advected, and also the discontinuity at the trailing tip

of the wing due to the wrap around of the curvilinear grid

and non-periodic textures. In (b), we start to see the for-

mation of a primary clockwise vortex above the airfoil,

and a secondary counter-clockwise vortex near the trail-

ing tip of the wing. In (c), the primary vortex becomes

more prominent. At the same time, we start to see some

compression of textures forming at the leading edge of the

wing. Finally, in (d), the primary vortex has separated from

the airfoil and the compressed textures at the leading edge

have become even more prominent. This sequence is best

seen in an animation which is available for download from

www.cse.ucsc.edu/research/avis/texflow2d.html.

Figure 7 shows three views of three different time steps

in our texture advection animation of the surface flow on



(a) Time Step 0

(b) Time Step 5

(c) Time Step 16

(d) Time Step 45

Figure 5. Advection of 3D sphere textures us

ing flow data with three rotating vortices lo
cated diagonally across the image.

(a) Time Step 0

(b) Time Step 10

(c) Time Step 25

(d) Time Step 60

Figure 6. Data is from a cross sectional slice

of a CFD computation for flow around an air
foil. More description of this data can be

found in [4, 6]. One can see the formation

of vortices above and behind the airfoil, as
well as compression of textures off the lead

ing edge of the foil.



the hemisphere cylinder. In (a), we see the initial mapping

of the un-advected textures in the physical domain of the

cylinder. In (b), we see a source critical point near the top

of the surface. Also, the sharp discontinuous curve running

through most of the length of the cylinder correspond to sur-

face topology lines and indicates regions of flow with very

different directions. In (c), the animation has progressed

further along and shows the persistence of certain flow pat-

terns even though the textures are dynamically being ad-

vected. Upon closer examination, one can see two separa-

tion lines along the cylinder body. Note that there is also

another critical point between the two separation lines. Fur-

thermore, there is a source critical point near the nose of

the cylinder. Again, these are best observed in an animation

which is available from the same web site mentioned above.

When we first showed these texture animation of real

flow data to our CFD scientists, they were very surprised

with seeing the animation. They have never seen this type

of synthetic texture flow on their flow data. Previously,

they had mostly relied on the traditional streamline particle

traces to observe their flow trajectory. Almost all of them

have very good comments about the animation and would

like to see our technique available to them soon.

6 CONCLUSION

We have described techniques and textures for animating

2D steady flow fields using texture advection. The method

is straight forward and relatively easy to implement. The

modifications introduced in this paper also addressed all

the difficulties identified in earlier texture advection work

– over-crowding and/or sparsity of textures over time, and

handling of boundary inflow and repelling nodes. The paper

first demonstrated how the proposed methods and textures

handled problematic cases using synthetic flow data. We

then applied it to two CFD data sets. Looking at still im-

ages in Figures 6 and 7, one can already gain the benefit of

this technique in the form of automatic extraction of flow

features such as location and type of critical points, as well

as flow topology curves. These features and the flow pat-

tern in general are further accentuated when one views the

animations.

There are a number of places for improvement and ex-

tension: (1) we think texture advection will be most ben-

eficial for unsteady flow data – this is what we observe in

nature as clouds form and dissipate, or as dyes swirl in a

mixture; (2) the selection of the spatial and temporal scales

of our textures is currently by trial and error, we hope to

come up with heuristics or recommendations for their se-

lection based on information about flow magnitudes; (3) the

patterns coming out of source critical points may be either

concentric ring-like patterns as one might observe when a

pebble is dropped in a pool, or it may be appear like pat-

(a) Time Step 0

(b) Time Step 17

(c) Time Step 34

Figure 7. Surface flow data on the hemisphere

cylinder. Critical points and topology lines

become obvious as the animation proceeds.



terns shooting out of the source. When one is the mind-set

of the latter case, we still have a distracting ring pattern. We

are exploring different ways of eliminating this extra ring;

and (4) extension of this technique to steady and time vary-

ing 3D flow fields. There is also excellent work in texture

advection of flow data carried out by Bruno Jobard that uses

simple white noise textures. 1
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