
3D Flow Visualization Using Texture Advection

David Kao1, Bing Zhang2, Kwansik Kim2, and Alex Pang2

1 NASA Ames Research Center
2 Computer Science Department, UCSC

davidkao@nas.nasa.gov, fbing, ksk, pangg@cse.ucsc.edu

Abstract

Texture advection is an effective tool for animating and in-

vestigating 2D flows. In this paper, we discuss how this

technique can be extended to 3D flows. In particular, we

examine the use of 3D and 4D textures on 3D synthetic

and computational fluid dynamics flow fields. Animations

of 3D flow fields using this technique can be found in

www.cse.ucsc.edu/research/avis/texflow3d.html.

Key Words and Phrases: scientific visualization,

volume rendering, 3D textures, vector field.

1 INTRODUCTION

This paper provides some initial results of using texture ad-

vection techniques for visualizing 3D flow fields. Anima-

tion is an indispensable tool for understanding the dynam-

ical properties of velocity fields. One has several options

on what and how to animate the field. For example, one

can animate arrow plots, which have some limited effec-

tiveness for 2D fields. But they quickly become too clut-

tered for 3D velocity fields. Alternatively, one can trace

and animate particles in 2D and 3D, and for both steady

and unsteady flow fields [4, 9]. While particle advection is

an effective means of animating and showing the dynamics

of the field, the particles are discrete and pointilistic. There

are techniques that attempt to provide a surface-like prop-

erty to these discrete particles [10, 12]. Rather than starting

with particles, our approach in this paper is to investigate

other representations.

Our goal is to produce an animation of the 3D flow

field in such a manner that one might observe with cloud

patterns, such as the large mass of swirling clouds in cy-

clonic events or how the jet trail dissipates as it is affected

by the wind, etc. As such, we look at ways of representing

3D cloud-like textures that we can then let the flow field

advect to generate our animation. In this initial investiga-

tion, we use simple fuzzy spheres as our “clouds” to see if

the idea merits investigation. We also report on how these

spherical cloud textures advect and deform over time using

both a synthetic and a computational fluid dynamics (CFD)

data set.

In the next section, we provide an overview of tex-

ture advection as a mechanism for 2D flow visualization.

In particular, we describe how one can work around some

difficulties such as providing continuous influx of new tex-

tures at inflow boundaries or source critical points. We then

discuss how we generated our 3D and 4D spherical cloud

textures. In Section 4, we discuss how the advected textures

are volume rendered. Results of this technique on the two

data sets are presented in Section 5. We finally summarize

the work and discuss our future directions.

2 2D TEXTURE ADVECTION

Given a texture image and an underlying 2D flow field, the

general approach of a 2D texture advection algorithm is

to successively distort the input image over time such that

it reveals the flow behavior when animated. We consider

each pixel in the image as a massless particle and compute

its path in the flow field using a second-order Runge-Kutta

integration method. Suppose that there are n time steps in

the animation. Then, at time step t

i

, where i < n, each

pixel is integrated backward by t
i

time steps. We then re-

place the current texture at each pixel by the texture value

of the pixel where the integration ends and save the “dis-

torted” texture image at time t
i

. To animate the flow, we

simply playback the saved images from all n time steps.

This texture advection method is a simple and effec-

tive approach to animate the 2D flow. However, the method

may not work well for some flows. Specifically, there are

two cases where the method may fail to depict the flow be-

havior accurately: (a) if the flow has source critical points,

where the flow appears to be repelling away from the crit-

ical point, and (b) if there are incoming flows from the

grid boundary. In our earlier work [5], we have proposed

several methods to deal with these two cases. Here we

briefly describe the problems and give an overview of our

approaches. The problem described here can occur in 3D

flows as well.

In the case where the flow has one or more source

critical points, some particles may reach one of the criti-

cal points, where the flow velocity is zero. The integration

algorithm would then end prematurely because the veloc-

ity is zero. The question then is what texture value should

be used? If we simply use whatever texture is at that crit-

ical point, then that texture value would expand over time

in the animation. In the case of a source critical point, it

is very likely that particles which are at an equal distance

away from the critical point will reach the critical point at

the same time. The textures on these particles would then



form a circular pattern. Hence, we would see the a constant

texture expanding radially from the critical point. This is

undesirable because the animation then would not reveal

the flow direction accurately.

In the case where there are incoming flows from the

boundary, some particles will reach the boundary during

the integration. Analogously, what is the texture value to

use? If we use whatever the texture is at the boundary, then

we would see constant bands of texture coming from the

boundary. This is also not a desirable outcome.

We have proposed two methods to deal with these two

situations. The first method is based on 3D procedural tex-

tures 1. During the integration, when the particle reaches

either the boundary or the source critical point, where the

integration ends prematurely, we step into a 3D texture vol-

ume by some depth to determine the new texture value.

The depth is based on the number of time steps remaining

when the particle integration ends and the texture color is a

function of this depth value. We define the 3D procedural

texture such that the color of the textures changes as one

steps into the 3D texture volume. This provides an effect

of continuously feeding texture from the boundary as well

as source critical points.

Another method that we have proposed is streamline

cycling [5] 2. For a subset of pixels in the image, we con-

sider each pixel as the seed of a streamline, where we inte-

grate the particle forward and backward until it (a) reaches

the boundary, (b) reaches a critical point, or (c) has ex-

ceeded the maximum length of a streamline. The latter

case is necessary to prevent very long streamlines in cir-

cular flow regions. During the streamline computation, we

save all the textures at each integration step. To animate

the flow, we simply shift the textures along the streamline

by a fixed amount at each time step of the animation. We

found that it is not necessary to compute one streamline per

pixel. It is sufficient to seed the streamlines every two or

three pixels.

3 3D and 4D TEXTURES

We worked with both 3D and 4D procedural textures as in-

put for advection of texture coordinates by the flow field.

In this initial study, we describe how spherical textures

are generated, how the spheres are spaced, and how they

change over time. We also describe the texture advection

process.

3.1 Spherical 3D and 4D Textures

Each 3D texture is populated with spheres. We initially use

spheres to see how well the method works. We eventually

plan to replace the spheres with more cloud-like shapes.

Currently, each sphere is assigned a texture value of 255

at the enter. This value linearly drops off to 127 as we go

1Preprint is available from: www.cse.ucsc.edu/research/avis/texflow2d.html
2Preprint is available from: www.cse.ucsc.edu/research/avis/texflow.html

out along the radius. Outside the sphere, the texture values

are set to 0. This allows for fuzzy spheres. To introduce

some variation, one can conceivably add noise to the values

within the sphere, or change the range of values defining

the sphere.

The spheres populating the 3D texture are randomly

distributed throughout the volume using a Poisson distri-

bution. That is, we specify a Poisson radius in addition to

the sphere radius. The first frames of Figures 1 and 2 show

the initial distribution of spheres in a 3D and 4D spherical

textures respectively.

In our current implementation, we statically generate

the 3D texture volumes. To allow the introduction of new

spherical textures across inflow boundaries, we set the tex-

ture dimension to be twice the flow data volume along each

dimension. This works for relatively short streamlines or

animations. However, we will eventually run out of sphere

textures to feed into the flow volume using this strategy.

In our earlier work with 2D flow visualizations using

this texture advection technique, we noticed that in some

flows, the advected textures may get crowded in some re-

gions of the flow, while the textures get sparser in some

other regions. One solution is to add an extra dimension to

the texture space (i.e. 3D textures for 2D flow fields) so that

new textures may pop out along the new dimension to over-

come the sparseness problem. Likewise, old textures may

disappear over time as they age in order to reduce the over

crowding problem. Hence, we also consider 4D spherical

textures in this work. One can simply treat the 4th dimen-

sion as time, where old spheres disappear over time, and

new spheres appear over time.

While this idea seem logical, it is not very practical

due to the large storage requirement for 4D textures. In-

stead, we use additional frames of 3D textures as a bank of

additional texture to draw from. In the examples shown in

this paper, we use a bank of four 3D texture frames, and cy-

cle through these four volumes as needed. The next section

discuss how these textures are used.

3.2 Advection of 3D and 4D Textures

We use the VisTech library [1, 8] to perform backward in-

tegration of streamlines. It handles such tasks as point lo-

cation, so that we perform the advection in physical space,

and it finds the corresponding computational cell that con-

tains the data.

Here is the algorithm we used to advect a single 3D

texture:

1. First, map the physical bounding box of the 3D flow

field to the 3D texture volume.

2. For each voxel in the 3D texture volume, find the cor-

responding physical position in the flow volume. In-

troduce a seed at this point and initiate backward inte-

gration for a streamline of length n.



3. For each point along the streamline, obtain the cor-

responding texture coordinate and value (via trilinear

interpolation). These are the values that will be played

back at the seed location during the animation.

4. In the backward integration step above, the streamline

may terminate in one of three ways:

(a) If the streamline has a length of zero (e.g. for

seed points at the boundary or at source critical

points), then a texture value of zero is assigned

to each frame in the animation for this point.

(b) If the streamline reached a boundary or a source

critical point after moving m steps, but still less

than the total of n steps, then introduce n � m

sequential texture values from the texture vol-

ume. Note that we usually have a larger texture

volume than the flow volume to allow for such

buffer zone of texture values.

(c) If the streamline was entirely within the texture

volume, then the corresponding texture values

along the streamline are assigned to the seed

point in consecutive frames of the flow anima-

tion.

Figure 1 shows a few frames from using 3D spheri-

cal textures for a synthetic flow field where the flow goes

around a vortex ring to produce a donut flow pattern. Note

that no new spherical textures can be seen entering the flow

volume. For that, we use 4D textures. The algorithm is

essentially the same as above, except for the dimension of

the texture volume, steps 1 and 4(b).

With 4D textures, each frame is 8x larger than the 3D

counterpart (i.e. 2x more in each dimension). In step 1,

the physical bounding box is placed in the middle of this

expanded texture volume, with buffer texture completely

surrounding the bounding box. Only the texture voxels

that overlap the physical bounding box are seeded, and dis-

played. The buffer texture voxels surrounding the flow vol-

ume are used in step 4(b) in the following manner.

If the streamline reached a boundary or a source crit-

ical point after moving m steps, but still less than the total

of n steps, then introduce n �m sequential texture values

from the surrounding buffer texture volume. If there is less

than n�m sequential texture values available in the current

3D texture frame, then we advance to the next 3D texture

frame. If we run out of texture frames, we simply recycle

the 4 frames over again. Figure 2 illustrates the effect of

4D textures on the same vortex ring data set.

4 VOLUME RENDERING

We use direct volume rendering (DVR) to render the se-

quence of 3D advected textures that have been advected

by the 3D flow field. From the sequence of rendered vol-

umes, we collate them into an animation. DVR is one of the

most popular methods for visualizing 3D data sets. Some

of the fundamental work can be found in Drebin et al. [3]

and Levoy [7]. More recent work, particularly on speed-

ing up the algorithm, includes hardware texture mapping

technique [2, 11] and shearwarp [6]. For this project, we

use a publicly available DVR software rendering package

called UltraVis (www.hpl.hp.com/ultravis) from Hewlett

Packard Laboratory. It is optimized for Intel Pentium III

based PCs and achieves impressive interactive rendering

rates on volume data of reasonable sizes. We chose this

program because it is fast, freely available, does not depend

on hardware and uses an accurate raycasting method. For

animation purposes, we defined transfer functions so that

the spherical texture patterns have fuzzy boundaries in or-

der to simulate motion blur effects. We did not use any

surface shading effects because they do not enhance the

perception of the flow considerably but rather exaggerate

the artifacts on the images due to the low resolution of the

data. In order to improve depth preception, we also defined

semi-transparent materials for the empty space between the

spherical texture patterns.

5 RESULTS

We tested our 3D and 4D texture map with 3D flow field

data. In this section, we describe some of the animations

we generated. Additional and updated sequences are avail-

able from the web site listed in the abstract.

Figure 1 and 2 shows snapshot images from the ani-

mations of the vortex ring data. The vector field has 64

3

cells and is characterized by flow that goes around from

the top of the volume, through the central axis and back out

and over the top like a donut. In Figure 1, we use a single

3D texture volume that is 128

3. Hence, a 1-to-2 mapping

between vector and texture space. From the animation se-

quence, we observe that the spheres get stretched as they

are advected over time. The stretching results directly from

the advection process, and simulates motion blur effects

which can be enhanced by using different transfer functions

during rendering. However, over-stretching would also hin-

der the desired effects. So, an appropriate balance must be

struck.

In Figure 2, we use multiple 3D texture volumes each

of them is 128

3. We notice that some of the spheres

that were overly stretched are now gone, while some new

spheres are introduced most notably near the boundaries.

This type of texture seem to enhance the dynamic nature of

the flow, and also reduce the problem of over crowding of

textures and sparseness of textures in different regions of

the flow over time.

In Figure 3, we apply the same techniques to a CFD

data set that describes flow over and around an airfoil.

There are (115, 157, 83) vector cells in this data set repre-

senting flow within a physical bounding box from (0, -0.33,

0) to (1.8125, 0.33, 1). This bounding box is mapped to the

center of a texture volume that has (512, 200, 300) cells

(i.e. mapped to the (256, 100, 150) interior texture cells).

Four such texture volumes are used. For the wing geom-



etry, we assigned a pre-arranged texture value so that the

wing can be rendered together with the flow. This helps to

provide a frame of reference, but we still need to improve

on smoothing the geometry.

6 SUMMARY AND FUTURE WORK

We have presented some initial results on how one might

extend texture advection to 3D flow volumes. We have

found that straight forward extensions of 2D techniques

is possible but may not be the most efficient in terms of

storage requirement. The results are still quite early but

do show some promise. There are a number of avenues

that we are currently exploring to improve this work. This

includes: (1) make sure that proposed technique is robust

enough to handle other types of 3D critical points and/or

curves; (2) explore other types of 3D and 4D textures. In

particular, our goal is to produce cloud like textures be-

cause most viewers can relate to their experience of watch-

ing clouds blown by the wind and inferring the wind pat-

tern from their appearance. Rather than seeding or growing

the cloud textures, we are also investigating an alternative

subtractive process where we remove “matter” from a solid

texture to produce cloud-like textures; (3) experiment with

the rendering parameters to help produce a more fuzzy and

wispy looking rendering of the advected cloud textures; (4)

experiment with simple white noise textures in conjunction

with texture advection from a single integration step; 3 (5)

improve the space and time requirements of the algorithm;

and (6) extend technique to time-varying 3D flow fields.

ACKNOWLEDGMENTS

We would like to thank Chris Henze for the synthetic 3D

vortex ring flow field, Jennifer Dacles-Mariani and Greg

Zilliac for the CFD wing data set, Suzana Djurcilov on

alternative cloud-like 3D textures, and Gunter Knittel and

HPL for making UltraVis available to the community. We

would also like to thank the members of the Advanced Vi-

sualization and Interactive Systems laboratory at UC, Santa

Cruz for their feedback and suggestions. This project is

supported in part by NASA grants NCC2-5281 and NCC2-

1260, LLNL Agreement No. B347879 under DOE Con-

tract No. W-7405-ENG-48, NSF NPACI ACI-9619020,

and NSF ACI-9908881.

References

[1] Stephen T. Bryson, David Kenwright, and Michael Gerald-

Yamasaki. FEL: The Field Encapsulation Library. In R.D.

Bergeron and A.E. Kaufman, editors, Proceedings of Visu-

alization 96, pages 241–247. ACM, October 1996.

[2] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated vol-

ume rendering and tomographic reconstruction using tex-

3Based on personal communication with Bruno Jobard. See

www.csit.fsu.edu/˜jobard/SwissMeteo/meteo.html.

ture mapping hardware. In Proceedings 1994 Symposium

on Volume Visualization, pages 91–98, Washington, D.C.,

Oct 1994. IEEE/ACM.

[3] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume ren-

dering. In Proceedings of SIGGRAPH 88, pages 65–74, Au-

gust 1988.

[4] A.J.S. Hin and F.H. Post. Visualization of turbulent flow

with particles. In Proceedings of Visualization 93, pages

46–52. IEEE, 1993.

[5] David Kao and Alex Pang. On animating 2D velocity fields.

In SPIE Visual Data Exploration and Analysis VIII, volume

4302, pages 41–48, 2001.

[6] Philippe Lacroute and Marc Levoy. Fast volume rendering

using a shear-warp factorization of the viewing transforma-

tion. In Proceedings of SIGGRAPH 94, pages 451–458, Or-

lando, FL, July 1994.

[7] Marc Levoy. Display of surfaces from volume data. IEEE

Computer Graphics and Applications, 8(5):29–37, May

1988.

[8] P. Moran, C. Henze, and D. Ellsworth. FEL 2.2 user guide.

Technical Report NAS-00-002, NASA, 2000.

[9] Han-Wei Shen and David L. Kao. UFLIC: a line inte-

gral convolution algorithm for visualizing unsteady flows.

In Proceedings of Visualization ’97, pages 317–322, 556.

IEEE, October 1997.

[10] Johan Stolk and Jarke J. van Wijk. Surface-particles for

3D flow visualization. In Proceedings Second Eurographics

Workshop on Visualization in Scientific Computing, 1991.

[11] Allen Van Gelder and Kwansik Kim. Direct volume render-

ing with shading via 3D textures. In ACM/IEEE Symposium

on Volume Visualization, pages 22–30, San Francisco, CA,

October 1996.

[12] R. Wegenkittl, E. Groller, and W. Purgathofer. Animating

flow fields: rendering of oriented line integral convolution.

In Computer Animation ’97, pages 15–21. IEEE Computer

Society Press, June 1997.



frame 1 frame 7

frame 17 frame 30

Figure 1. Images from the animation of the vortex ring data with single 3D texture map.

frame 1 frame 14

frame 27 frame 34

Figure 2. Images from the animation of the vortex ring data with 4 dimensional texture map.



frame 1 frame 7

frame 15 frame 30

Figure 3. Images from the animation of a CFD wing data using four 3D texture volumes.


