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Abstract

Visualized data often have dubious origins and quality. Different forms of uncertainty and er-
rors are also introduced as the data are derived, transformed, interpolated, and finally rendered.
In the absence of integrated presentation of data and uncertainty, the analysis of the visualization
1s incomplete at best and often leads to inaccurate or incorrect conclusions. This paper surveys
techniques for presenting data together with uncertainty. These uncertainty visualization tech-
niques present data in such a manner that users are made aware of the locations and degree of
uncertainties in their data so as to make more informed analyses and decisions. The techniques
include adding glyphs, adding geometry, modifying geometry, modifying attributes, animation,
sonification, and psycho-visual approaches. We present our results in uncertainty visualiza-
tion for environmental visualization, surface interpolation, global illumination with radiosity,
flow visualization, and figure animation. We also present a classification of the possibilities in
uncertainty visualization, and locate our contributions within this classification.
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1 Introduction

With few exceptions, most of the visualization research has ignored or separated the presentation
of uncertainty from data. Part of the reason is the inherent difficulty in defining, characterizing,
and controlling the uncertainty in the visualization process. Another reason is the lack of meth-
ods that present uncertainty and data. We have seen this as an opportunity for research with
great potential in a wide variety of applications. Some examples are: comparative visualization
of experimental and simulation data, quantitative and visual analysis of image compression al-
gorithms, comparison of volume rendering algorithms and volumetric data sets, finite element
analysis, data assimilation, ensemble forecasting, as well as those presented in this paper. The
common underlying problem in these areas is visually mapping data and uncertainty together
into a holistic view.

As a possible solution, one might consider setting free parameters to uncertainty values using
existing surface, volume, flow, and multi-dimensional visualization methods [CBB91]. In fact,
we do start with existing methods. However, even with the simple task of designing glyphs or
icons that incorporate uncertainty information [Bri84, Tuf90, WPL96, MM94], the process is
sometimes counter-intuitive. For example, while a glyph may appear appropriate by itself, the
user’s perception of the glyph may be different when a group of them is presented in various
scales and locations. Thus, while some of the methods we have examined are not necessarily new,



they must be able to render and convey the data in complete accordance with the facts. This
has been recognized and is often stated as a worthy goal in scientific visualization (e.g. in the
IEEE Visualization discussions on How to Lie with Visualization, IEEE Visualization panels and
reports [GU95], and the NCGIA initiative on Visualization of Spatial Data Quality [BBC91]),
but 1t has rarely been pursued or realized. In our investigation of uncertainty visualization, our
approach has been to look at the needs of different application areas and to develop methods
to address them. We found that in many instances, applications are orthogonal to methods.
That is, a method developed for an application may be applicable in other areas. At the
same time, an application may provide ideas for a visualization method that may not have
been apparent without the application context. A simple example would be animation as a
means to convey uncertainty information, and developing uncertainty visualization methods
for comparing modeled versus motion-captured animation data. Because of this synergy, new
applications provide ideas for more methods. The methods presented here represent significant
steps toward achieving the goals of uncertainty visualization.

This paper is organized as follows: section 1.1 defines uncertainty visualization, and identifies
the different sources of uncertainty; section 2 classifies methods for uncertainty visualization ;
section 3 presents our new uncertainty visualization methods; we then conclude this paper with
some more ideas for applications and methods of uncertainty visualization.

1.1  What is Uncertainty Visualization?

Uncertainty visualization strives to present data together with auxiliary uncertainty informa-
tion. These visualizations present a more complete and accurate rendition of data for users
to analyze. The methods employed in uncertainty visualization may range from overloading of
visual parameters such as those commonly found in multivariate visualization, to verity visual-
ization [WPL95, WPLI6] where the display of both data and uncertainty is inseparable within
the same picture. Applications which can benefit from uncertainty visualization are those where
there is a chance for uncertainty to be introduced in the visualization process, and where such
uncertainty matters. Depending on the intent or purpose of the visualization, these uncertainty
information may be presented in a subdued manner to serve as a subtle reminder of the pres-
ence of uncertainty to the users; or these uncertainty information may be highlighted and even
exaggerated to help in data comparison tasks. The ultimate goal of uncertainty visualization is
to provide users with visualizations that incorporate and reflect uncertainty information to aid
in data analysis and decision making.

1.2 What is Uncertainty?

We define uncertainty to include statistical variations or spread, errors and differences, minimum-
maximum range values, noisy, or missing data. This broad umbrella is intended to capture most
if not all the possible types and sources of uncertainty in data. NIST has written a standards
report [TK93] which identifies four ways of expressing uncertainty. For the discussion in this
paper, we consider three types of uncertainty: statistical — either given by the estimated mean
and standard deviation, which can be used to calculate a confidence interval, or an actual dis-
tribution of the data; error — a difference, or an absolute valued error among estimates of the
data, or between a known correct datum and an estimate; and range — an interval in which the
data must exist, but which cannot be quantified into either the statistical or error definitions.
Note that the term data quality has an inverse relationship with data uncertainty [PFN94] and
hence can also take advantage of the techniques presented in this paper.

1.3 Sources of Uncertainty

In order to understand what is overlooked in visualization, we quickly review the sources of
uncertainty, errors, and ranges within data. Fig. 1 illustrates the three major blocks in a
visualization pipeline leading to the analysis of the visualization output. It is clear that different



forms of uncertainty are introduced into the pipeline as data are acquired, transformed, and

visualized.
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Figure 1: This visualization pipeline shows the introduction of data uncertainty from models and
measurements, derived uncertainty from transformation processes, and visualization uncertainty
from the visualization process itself.

Uncertainty in acquisition:

Starting with the data acquisition stage, one will note that nearly all data sets, whether from
instrument measurements, numerical models, or data entry have a statistical variation [Cha83].
With instruments, there is an experimental variability whether the measurements are taken by
a machine or by a scientist. The more times the measurement is taken, the more confident
the measurement. But there will be a statistical variation in these measurements. The same is
true for data from numerical models and human observations or inputs. In numerical modeling,
the model and its parameters have been decided by a domain specialist, and are inherently
a simplification (e.g. linearization of a nonlinear system) of the system being modeled. In
addition to model simplification and sensitivity of these models to input parameters, numerical
calculations performed on these models also introduce errors due to the choice of integration
algorithms and the limited precision of the computing machinery. Likewise, there is variability
in human observations both in terms of difference in perception among individuals and also to
slight differences when asked to perform a task repeatedly.

Uncertainty in transformation:

Often times, raw data are not rendered directly but are first subjected to further transfor-
mations with or without the knowledge of the person doing the visualization task. These data
transformation operations may be as simple as conversion from one unit of measure to another,
or may involve some algorithm to fuse one or more types of data together to derive a new data
type. Data transformation operations may occur as early as the data acquisition stage or later
in the visualization stage. Likewise, data may be rescaled, resampled, quantized, etc. either
prior to, or as part of, the visualization stage. The key point 1s that these transformations alter
the data from its original form, and have the potential of introducing some uncertainty.

Uncertainty in visualization:



What is more interesting and perhaps not self evident is that uncertainty is also introduced
in the visualization stage itself. For instance, in global illumination of 3D scenes, radiosity algo-
rithms use approximations for calculating form factors. Some recent work in this area addressed
the issue of controlling the errors [GK94, LSG94, ATS94]. As these researchers also pointed out,
the rendering process introduces uncertainty arising from the data collection process, algorith-
mic errors, and computational accuracy and precision. Similarly, there are different approaches
to direct volume rendering of 3D data sets [UH90, MMMY96] resulting in slightly different ren-
derings of the same data set. The differences in the resulting images may be due to different
ray traversal methods or the different filter functions used in splatting; or they may be due to
tetrahedralization or resampling processes; or they may be simply due to the tradeoffs between
speed and image quality.

Uncertainty introduced in the visualization process is not limited to radiosity and volume
rendering, but are also present in more routine operations. For example, the use of interpolation
is quite prevalent in taking slices through data sets, in contouring, as well as isosurface algorithms
[LC87, VGW94], to name a few. Surface approximation and interpolation is used in dealing
with scattered data sets [Lod96]. Here, a variety of tradeoffs exist in performance and accuracy,
and there is no ideal surface in many cases because of the many free parameters available
[Far88, LSPW96]. In many cases, the data that are to be interpolated have numerous errors,
and may even lack topology information [HDD194].

Similar difficulties and range of choices produce uncertainty in flow visualization methods.
For example, different integration methods, step sizes, orders, and seeding strategies lead to
slightly different flow visualization results. Effects of uncertainty are more pronounced in the
vicinity of or on critical points in the flow field. These differences may at times result in
drastically different flow visualizations [DH96].

Animation allows visualization to include an additional parameter, usually time. Again,
there are several opportunities for uncertainty to be introduced. The process of in-betweening
to fill in frames between key frames is analogous to surface interpolation, and though no method
is correct, there are many methods available, and all of them will result in slight variations.
Aside from differences arising from interpolation of positional information, potentially more
serious differences may arise from interpolation of orientation information depending on whether
quaternions or Euler angles are used.

While we have tried to identify the common and major culprits of how uncertainty are intro-
duced in the visualization pipeline, this is by no means an exhaustive list. Hopefully, this quick
enumeration will draw the attention of visualization designers and users to the potential pitfalls
of blindly using visualization methods without fully understanding the limitations and assump-
tions of each method. We next turn our attention to classifying visualization approaches, then
uncertainty visualization approaches, and finally presenting several new methods for uncertainty
visualization.

2 Classification of Methods

To classify uncertainty visualization approaches; we first consider more general classifications.
Keller and Keller [KK93] classify visualization by using a taxonomy of visualization goals. Tufte
[Tuf83] classifies visualizations by developing evaluation and analysis methods such as data-ink
maximization. Carswell [Car92] and Cleveland [Cle85, CM86] use evaluation as a basis for the
theory of specifiers, that fundamental parameters, length, area, ratios, etc. describe and deter-
mine the effectiveness of visualization. Bergeron and Grinstein [BG89] introduce a classification
that uses lattice arrangements of data. Brodlie [BCET92] describes a classification based on the
dimensionality of the entity that is being visualized. Application specific visualization classifi-
cations have been done by Hesselink et al. [HPvW94] for vector and tensor field visualization.

We create a classification system that is similar to the systems of Brodlie and Hesselink et al.
in certain aspects, but is extended to accommodate uncertainty visualization techniques. Brodlie
classifies techniques using two characteristics. First, he uses the underlying field, where data may



be grouped as dependent or independent variables, and classified as having ordinal or nominal
values. Second, he uses the wview, which is an operation on the underlying field to produce a
pictorial representation. For example, generating a set of contour lines for a given height field, or
generating the surface representation of the height field. Hesselink et al. classify techniques using
three characteristics. First, they use the order of the data: scalar, vector, or tensor (three data
orders). Second, they use the spatial domain of the visualization objects: point, line, surface,
or volume (four domains). Third, they introduce the information level of the data: elementary,
local, and global (three information levels). However, these classifications do not account for
different types of uncertainty information or techniques. In order to incorporate uncertainty
information into visualization schemes, we propose a classification with five characteristics:
value, location, data extent, visualization extent, and ares mapping. Each of these concepts are

defined below.

1. Value of datum and its associated value uncertainty (scalar, vector, tensor, multivariate).
The data value, y, may be characterized as a scalar, a vector, a tensor or a multivariate
variable. A multivariate variable has several components, each of which can be a scalar, a
vector or a tensor. In our classification scheme, value includes possible uncertainties asso-
ciated with each data value. For example, y = [y1, y2, ..., Ym] can be used to represent data
values that are multi-valued scalars, vectors, or tensors. Likewise, U, = [uy,, Uy,, ..., Uy,.]
can be used to represent corresponding uncertainties in data value. Value corresponds to
the dependent variables of Brodlie’s underlying field and the order of Hesselink et al.

2. Location of datum and its associated positional uncertainty (0D, 1D, 2D, 3D, time, etc.).
This characteristic identifies the dimensionality of the space in which the data resides.
It specifies how many independent variables are used to describe each data value. For
example, 0D ,1D, ... nD and time. In our classification scheme, this description is extended
to include positional uncertainty. For example, if an n-dimensional datum has a value y, it
can be specified as y = f(x1, 22, ..., #,), while its corresponding positional uncertainty may
be specified by U, = [ug,, Ug,, .-, Uz, ]. Location corresponds to the independent variables
of Brodlie’s underlying field.

3. Extent of datum location and value (discrete or continuous).

The data extent corresponds to the distribution, range, interval, or period over which
data is valid. For example, if a highly fluctuating variable such as wind velocity was
measured and averaged over time, the time window would specify the time extent (extent
of location); the distribution of wind readings and the range of wind readings over this
time period would specify the velocity extent (extent of value). On the other hand, extent
may also be used to specify an interval of acceptable values (e.g. 0 ... 255) for each datum.
That is, value extent of y can be expressed as Ey = [ey,, €y,, .-, €y,.], Where each e, can be
an interval or a distribution defined over the location extent E, = [ez,, €x,, ..., €z, ], where
the location extent itself can be a range or distribution or some more complicated function
of the data location. Varying data extents are common for sampled medical data in terms
of the sample spacing, and common in environmental data in terms of the time averaging
involved. For our purposes, we distinguish between two types of data extents — discrete
and continuous. A discrete extent implies that data are valid at discrete domain values
only, while a continuous extent implies data are valid through a continuous domain. An
example of a discrete data extent is the population count associated with U.S. cities, while
an example of a continuous data extent is the surface of the earth — where population can
also be represented. Data extent corresponds roughly to the information level of Hesselink
et al.

4. Visualization extent (discrete or continuous).
The visualization primitive extent determines whether individual datums are indicated or
whether a continuous range of data are indicated. The visualization extents are grouped
into discrete (includes points and glyphs) and continuous (includes curves, surfaces, vol-
umes). Animation is orthogonal to these two. That is, animation can be used with both



discrete or continuous visualization extents. The choice of the visualization primitive ex-
tent is independent of the actual underlying extent of the data. For example, fitting a
continuous line through a plot of heights of students in a class is a continuous visualization
extent of a discrete data set. The data extent is independent of the visualization extent,
though some mappings are more natural and useful than others. It is important to note
that discrete visualization extents, such as glyphs, can be used with continuous data, and
that continuous visualization extents such as parallel coordinate display [Ins85, ID90] can
be used with discrete data. Visualization extent corresponds with views of Brodlie and
domain of Hesselink et al.

5. Azes mapping defines visualization mapping (experiential or abstract).

It allows different variables or grouping of variables to be mapped together or to different
axes. For example, one can use data values in place of location values for coordinate axes
such as in a scatter plot, in order to investigate cause and effect relationships; or investigate
the location using a spatial plot with the dependent variable(s) being visualized; humidity
and temperature values can be treated as vector components; etc. Axes mapping allows
two basic approaches to visualization: experiential rendering is to replicate the viewer’s
experience with the visualized phenomenon. Abstract rendering is to plot the data in a
non-experience based mapping, which may result in additional insight and understanding.
Both these visualization approaches may be used for uncertainty visualization to show
what the true variations in the mapped axes are. Essentially, in multi-valued data sets,
some projection of the n-dimensional data set must be used to produce a typically 2-
dimensional visualization, perhaps over time, and there is considerable flexibility in the
mapping beyond the experiential /abstract demarcation we use in this section.

Value Visualization Extent
discrete | continuous

scalar glyphs (error bars, box plots, | pseudo-coloring, difference images,
Tufte quartile plots) side-by-side, contour lines, blinking

| multivariate || Chernoff faces, scatter plots | side-by-side, difference images |

vector glyphs modified streamlines/ribbons/tubes,
(modified tensor probes) modified LIC

tensor glyphs modified hyperstreamlines

(modified tensor probes)

Table 1: Existing and likely uncertainty visualization techniques.

Table 1 uses two characteristics (value and visualization extent) to classify existing uncer-
tainty visualization methods. The other characteristics explain and demarcate the space in
which visualization methods can be classified. The methods provided in the table can be shared
across the other characteristics where deemed appropriate. A complete table for all the five
characteristics is hard to display in two dimensions. Therefore, for sake of simplicity of presen-
tation, we have chosen the two most representative characteristics that separate methods. The
listing of all of the characteristics is the complete classification, and must be used to quantify a
given uncertainty visualization technique.

Table 1’s upper left cell, contains the most thoroughly researched statistical visualization
work: the visualization of a scalar value and its uncertainty, such as the median, quartiles, and
outliers of a statistically evaluated variable. If visualized with a discrete visualization extent,
the variety of statistical plotting tools is impressive, including glyphs, with various attributes set
to denote values, where attributes are the shape, color, etc. of a graphical specifier. We discuss
attributes in more details in Section 3. Error bars can show the range of the data, and represent
a glyph to show uncertainty that works well with the discrete visualization extent. A discrete



visualization extent can be formed either directly from discrete data, or densely sampled data
that is sub-sampled, or continuous phenomena/data that is sub-sampled. The mapping of data
malkes it possible to visualize a given data set with many techniques, converting discrete data
to continuous representation and vice versa.

Scalar data may also be visualized with methods that are continuous visualization extents,
meaning they impart the effect that the phenomena is not discrete. For example, a discrete
representation of data in a plot is to plot with points, while a continuous representation of those
same points is to plot with a smoothly varying line that passes through the points. For this
reason the scalar row, continuous visualization extent, cell in the upper right of the table, shows
attributes of lines, contours, etc. to map the uncertainty to color or line style. Note, that the
dimension of the data domain has not been chosen for the table, because higher dimensional
domains have nice analogues, such as the transition from lines, to contours, to isosurfaces for
1D, 2D, and 3D.

The rest of the table shows those methods that deal with higher order data, including multi-
variate, vector, and tensors. A multivariate variable is simply a number, n, of scalar values that
are to be simultaneously visualized, and encompasses the traditional multiple valued visualiza-
tion methods, in addition to visualizing their uncertainty. Complex (real plus imaginary) data
are typically handled with this approach as well. The vector is distinguished from the multi-
variate because it is less general, and there are data sets that are directly vector data sets. Flow
visualization, wind, currents, etc. are of this type, and the assumptions in the visual mappings,
and the techniques used are different than for the multivariate. Tensor uncertainty visualization
takes the meaning of the multiple values and their uncertainty to be tensors. Because the most
general method 1s the multivariate, vector and tensor data sets can use the multivariate methods.
The reverse is also true, but the interpretation may not be correct, as in visualizing financial
data as vectors. There are not many existing techniques for higher order data with continuous
visualization extents. We now describe some existing uncertainty visualization methods and
how they fit into our classification.

Many researchers are fully aware of the uncertainty, usually in the form of errors, in their
data. These are usually displayed using some straightforward method such as side by side
comparison or differencing. For example, Lischinski et al. [LSG94] used line plots to render
uncertainty, Greene et al. [GK94] used difference images, and Arvo et al. [ATS94] used norms
for the entire image. In surface interpolation, Hagen et al. [HHST92] used pseudo-coloring of
the surface curvature and other properties of the surface. This is an example of scalar value
(first row) continuous extent visualization (second column) in Table 1.

In geographic and information systems (GIS), researchers are aware of the statistical varia-
tion, and have employed a range of techniques to display this information. For example, aside
from pseudo-coloring areas of maps to represent value uncertainty, they may also use contour
lines to indicate regions of similar confidence levels. For cartographers, the contours may be for
areas of similar spatial distortions from projections. Fisher [Fis94] proposed animation tech-
niques such as blinking data points to represent data uncertainty. Gershon [Ger92] proposed
animation for the display of uncertainty in fuzzily classified regions. These are examples of
scalar value (first row) continuous visualization extent (second column).

We have not seen any visualization methods designed for presenting uncertainty information
for vector or tensor data. However, some existing vector and tensor visualization methods can
be modified to include uncertainty information. For example, tensor probes [dLvW93] with dis-
crete visualization extents can be easily modified to incorporate uncertainty information. For
continuous visualization extents, line integral convolution (LIC) [FC95] can use the uncertainty
information to modulate the texture. Likewise, adding more variables into existing flow visu-
alization methods such as streamlines result in streamballs [BHR194], and to hyperstreamlines
[DH93] as well.

The taxonomy of existing methods of displaying uncertainty are summarized in Table 2. Qur
classification of uncertainty visualization techniques demonstrates that only the scalar value dis-
crete visualization extent, or upper left entry in Table 1 has been adequately explored, where



the uncertainty may be shown with economy using Tukey’s box plots [Tuk77], Tufte’s quartile
plots [Tuf83] and/or Cleveland’s framed rectangles [Cle85]. What we describe in the following
section are new methods for displaying higher dimensional uncertainty (e.g. a vector of uncer-
tainty parameters) in surfaces and in animation applications. The primary methods we discuss
are adding glyphs (Section 3.1), adding geometry (Section 3.2), geometry modification (Section
3.3), attribute modification (Section 3.4), animation (Section 3.5), sonification (Section 3.6),
and psycho-visual approaches (Section 3.7).

| Technique | Value | Location | Data extent | Vis extent | Axes mapping |
side-by-side any 2D or 3D any any experiential
difference image | scalar 2D, 3D, or time | any continuous | experiential
pseudo-color scalar 2D or 3D any any experiential
contour lines scalar 2D any continuous | experiential
blinking scalar 2D any any experiential
scatter plot multivariate | nD any discrete abstract

Table 2: Taxonomy of some existing uncertainty visualization methods as used in different appli-
cations

3 Uncertainty Visualization Methods

We have developed a variety of new uncertainty visualization methods. These are organized
into a table showing general approach versus application domain (Table 3), as well as their
classification according to the five characteristics listed in the previous section (Table 4). Entries
in Table 3 indicate methods that can be used for an application. The presentation below is
organized by general approach, with detailed description of how a particular method and its
relationship to our classification scheme in Table 1. But first, we describe the four different
applications that we have investigated, focusing on their relevance to uncertainty visualization
and the type of uncertainty in each case.

Approach Application
Radiosity | Animation | Interpolation | Flow
Add glyphs spherical ladders uncertainty ellipsoidal
Add geometry snow angels fat surfaces, bumps | ribbons
Modify geometry | affine transform IFS, displacement
Modify attributes | reflectivity, textures bump mapping | pseudo-color
Animation magnitude, frequency | oscillate oscillate batons, ranking
Sonification pitch, instrument duration
Psycho-Visual left /right subliminal

Table 3: Some uncertainty visualization methods for a range of applications

Radiosity:

There are several motivations for comparing results from different radiosity algorithms. The
main motivation is that, like direct volume rendering, radiosity calculations can be expensive
and hence numerous works in this area have focused on different approximations to speed up
the calculations. Competing results are often displayed side by side and the burden is placed
on the user to identify the regions and extent of difference. Since rendering is an integral part



of the visualization process, we need to understand how these different forms of approximation
influence the final picture. Another motivation for this application is its similarity to other
applications. That is, radiosity is concerned with calculation of surface radiosities of a static
3D scene. The ability to highlight differences between competing methods on these surfaces can
benefit other applications such as finite element analyses of structural components.

Animation:

In this particular application, we are interested in comparing two sets of animation data:
modeled human motion versus motion-captured human motion. Positional data are available
for key points of the body, such as head, hips, extremities, etc. However, the data could just as
well be from other sources such as comparing animations using different interpolation methods,
or from other applications such as different paths of streamlines in flow visualization. From
a modeling point of view, it is important to understand how the modeled motions differ from
actual human motions (or how one streamline is different from another streamline, etc.) in order
to improve the animation model.

Interpolation:

In dealing with environmental data sets, one often encounters sparse and scattered data.
The dispersion and sparsity of the data points are often attributed to the accessibility of the
sites and the cost of the instruments that collect them. In an ideal situation, the field would be
populated with enough instrumentation to sample the field at sufficient resolution to capture
the phenomenon of interest. In reality, we have to approximate and/or interpolate the field
based on the limited number of data points. Because the choice of interpolation algorithm can
substantially influence the appearance of the interpolated field, it is important to understand
how the distribution of data location as well as data values influence the performance of different
algorithms.

Flow visualization:

There are several flow visualization software packages where users are given the option of
selecting different integration methods, integration time interval, integration directions, etc.
This flexibility may actually be detrimental if the user does not fully understand the impact of
these choices on the resulting flow visualization.

Table 3 shows the four application areas discussed as columns, and a classification of uncer-
tainty visualization methods along rows. We have split techniques into seven fundamental areas
which provide a separation of means by which information are encoded into a visualization. The
following sections describe each area and relate them to the applications.

3.1 Add Glyphs

A glyph is a geometrically plotted specifier that encodes data values. Glyphs encode information
through their shape and/or color. An example would be arrow glyphs, which are used to visual-
ize magnitude and directional information in vector fields. Glyphs can also be used to visualize
uncertainty in a variety of ways. We have investigated glyphs in the following applications,
radiosity [PF96], vector fields [WPL96, WSF195], surface interpolation [LSPW96], flow visu-
alization [LPSW96], and key-framed animation [WPL95]. The primary issues in using glyphs
for visualizing uncertainty are the sampling frequency/location and the placement orientation
(e.g. [TBY6]). For most of our applications to date, we have been able to specify the orientation
through the nature of the data being presented. For example, in interpolation of a height field,
there 1s going to be uncertainty in the heights, and the glyphs are therefore oriented vertically
to indicate this height variation.

Glyphs in radiosity have included spheres whose radii are scaled to the difference in different
radiosity solutions. For multivariate uncertainty information, ellipsoidal or more complicated



| Technique | Value | Location | Data extent | Vis extent | Axes mapping |

material prop scalar 3D discrete surface experiential
texture mapping | scalar 3D discrete surface, volume experiential
spherical scalar 3D discrete point experiential
affine transform scalar 3D discrete surface experiential
mag/freq scalar 3D discrete surface and anim | experiential
left /right scalar 3D discrete surface experiential
bump mapping multivariate | 2D and time discrete surface experiential
snow angels vector 2D and time discrete surface experiential
oscillation multivariate | 2D and time discrete point, curve, anim | experiential
uncertainty glyph | vector 1D or 2D continuous point experiential
fat surfaces scalar 2D or 3D continuous surface, volume experiential
IFS multivariate | 1D, 2D, or 3D | discrete continuous experiential
displacement scalar 2D or 3D continuous surface experiential
instrument scalar 1D discrete point abstract

subliminal nominal 2D or 3D discrete surface experiential
ellipsoidal multivariate | 3D and time continuous point experiential
ribbons multivariate | 3D and time continuous surface experiential
batons multivariate | 3D and time continuous point, curve, anim | experiential
ranking multivariate | 3D and time continuous | curve and anim experiential
duration scalar 1D or time discrete curve or anim experiential

Table 4: New uncertainty visualizations methods as applied to our applications

glyphs can be used together with color. Fig. 2 shows an example where the differences from
two radiosity solutions are visualized with spherical glyphs.

Glyphs in vector fields have been custom designed to encode the magnitude and bearing
uncertainties. We have worked with maximum likelihood output from ocean radars, wind sensing
radars, and interpolated winds from scattered stations. Fig. 3 shows how uncertainty vector
glyphs are used to visualize vector fields with derived magnitude and directional uncertainty
information.

Glyphs in surface interpolation have been used to compare interpolants such as bilinear,
multi-quadric, and Shepard’s. The length of the glyph is scaled to the difference between the
interpolants. Fig. 4 shows how such line glyphs do pairwise comparisons of the interpolated
surfaces.

Glyphs in flow visualization have been used to show the deviation of flow solvers. Fig. 5
shows the use of glyphs to compare Eulerian integration versus Runge-Kutta, where the length
of the glyph is the difference between two solvers.

Glyphs in key-framed animation have been used in a similar fashion to the flow visualization.
They are used to illustrate path differences arising from using different interpolation methods.

The variety of applications that use glyphs for uncertainty visualization, as well as the variety
of encodings possible with glyphs, make this method highly successful, and extensible to many
other applications.

3.2 Add Geometry

Uncertainty can be visualized in certain applications by adding geometry to rendered scenes.
While glyphs do add geometry, they are placed at discrete locations. Adding geometry is
used to denote a more continuous representation of data. Techniques include contour lines,
isosurfaces, streamlines; and swept surfaces and volumes. Some extensions of these techniques
for uncertainty visualization are described below.
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Figure 2: Spherical glyphs scaled to radiosity

differences.

Figure 4: Line glyphs show difference be-
tween bilinear and multi-quadric interpo-

lated surfaces.
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Figure 3: Uncertainty vector glyphs over

Monterey Bay.

Figure 5: Line glyphs tile particle positions
along streamlines computed by two different

integration methods.



To show the differences between two methods of scattered data interpolation, a fat surface
can be created by sweeping one surface to the other. This is illustrated in Fig. 6 where a cross
sectional cut reveals varying thickness across the surface.

Figure 6: Fat surfaces showing the difference

between the bilinear and multi-quadric in-

terpolations. The cross sectional slice shows

how fat surfaces can be used to exaggerate Figure 7: Surface patches are split into four

the difference. pieces and displaced vertically according to
radiosity differences.

Fig. 7 illustrates a variation where geometry is added on a per patch basis instead of over the
entire region in order to show the radiosity differences on each patch. The patches are divided
into 4 smaller patches and are displaced vertically at their centers by an amount proportional
to the difference. Rather than displacing them up or down according to the signed difference, a
red/green coloring scheme is used instead. Together with a movable light source (black sphere),
the user can examine different areas in more detail.

For flow visualization applications, geometry is added in the form of uncertainty ribbons, rep-
resenting the extent between two streamlines calculated from two different integration methods.
See Fig. 8.

When comparing two sets of character animation, line segments are used to connect key
points of the body. The area bordered by corresponding line segments of the simulated data
and the motion-captured data are then used to sweep out an area on the same plane as the
animation data. This is illustrated in Fig. 9 and is similar to having each stick figure do a snow
angel one after the other over the same location. Regions which have less depression indicate
more variance.

3.3 Modify Geometry

Uncertainty can be visualized by modifying geometry in a scene. Geometry may be translated,
scaled, rotated, or generally warped or distorted. They may also be displaced, subdivided or
refined.

Simple affine transformations, such as translation and rotation, have been used to indicate
uncertainty in the data. For the radiosity application, the surface patches are either translated
in or out according to the radiosity difference calculated by two different form factor methods
(Fig. 10), or rotated up to a maximum of 90 degrees (Fig. 11).
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Figure 8: Uncertainty ribbons are used to
show the deviations and twisting between
two streamlines generated by different inte-
gration methods.

Figure 9: Snow angels are marks left on the
ground by sweeping out limb segments. The
amount of depression, which is mapped to
gray level above, corresponds to the similar-
ity in the two animation data sets.

Figure 10: Surfaces patches are translated in
or out of their original positions to highlight
differences.

Figure 11: Surfaces patches are rotated in-
stead of translated giving a similar effect.

13



Fractal interpolation using iterated function systems (IFS) is an additional method we have
used to impart uncertainty into the visualization. The interpolation method used in the recon-
struction of sampled data sets during rendering impacts the interpretation of the data. We have
found that smooth interpolations sometimes impart the message that the data itself represents
a smooth phenomenon, or that there was a higher density of data collected than indicated.
We developed interpolation methods to demonstrate uncertainty through the roughness of the
surface or the variation in the volume [Wit95]. Fig. 12 shows a fractal interpolation of 2D scalar
samples.

Similar to Fig. 12, Fig. 13 produces a bumpy looking surface. This is achieved by displacing
the surface up or down according to the scaled difference between different surface reconstruction
methods. The location and frequency of the bumps give an indication of the location and
magnitude of deviation between the two methods of interpolation.

Figure 13: Bumpy looking surface created by

Figure 12: TFS surface interpolation of scat- simple facet displacement.

tered data.

3.4 Modify Attributes

Uncertainty can be visualized by modifying attributes of geometry in the rendered scene. At-
tributes include the bidirectional reflectance distribution function (BRDF) and other means of
controlling the shading such as pseudo-coloring. The control of the shading and coloring pro-
vides several parameters that can be mapped to uncertainty. The simplest 1s to use a color
lookup table approach where a color palette is used to map uncertainty values to different colors
on the visualization primitives. This approach can be used to pseudo-color surfaces, streamlines,
glyphs, and animation characters. Additional parameter control is possible through variables
in the shading process. Examples include mapping different reflectivity coefficients, such as
specular and diffuse, to uncertainty values in order to alter the appearance of the visualiza-
tion primitive. Another example would be manipulation of surface normals, similar to bump
mapping, and in combination with lighting controls to provide indications of uncertainty [PA95].

Below are some examples that illustrate how modifying attributes can be used to incorporate
uncertainty. For comparing the difference between the radiosities on a surface resulting from two
different methods of form factor calculations, material properties of the polygon can be altered
to make it either more or less diffuse or specular according to the difference on the polygon.
For example, differences can be scaled to range from 0 to 1, and then mapped as diffuse and
specular coefficients, such that the polygon with the least difference is assigned diffuse and
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specular coefficients of 0, and the one with the largest difference is assigned coefficients of 1.
Fig. 14 illustrates how mapping differences to diffuse coefficients will make those surface patches
with higher differences appear brighter. Fig. 15 maps differences to specular coefficients. Note
that the surfaces are rendered in connection with a movable light source. If the light source
is tied to the camera or eye position, then altering specular coefficients allows one to focus on
planes parallel to the viewing plane. Altering the specular coefficients is a better tool if the user
is interested in viewing a particular area but altering the diffuse coefficients is better for viewing
the error associated with the entire image.

Figure 14: Altering diffuse coefficients ac- Figure 15: Altering specular coefficients ac-
cording to difference. cording to difference.

Aside from the use of shading, lighting, and coloring parameters to alter the attributes, and
hence, the appearance of visualization primitives for uncertainty visualization, embellishments
such as textures can also be used to combine uncertainty information in visualization products.
Using the same data set, Figs. 16 and 17 illustrate how the differences can be mapped to 2D and
3D textures respectively. Each surface patch in the scene is texture mapped with either a 2D
circular pattern or a 3D conical shape. Where the differences are smaller, several smaller circles
(or solid textures) are mapped; and where the differences are larger, larger circles or portions
of circles (or solid textures) appear.

Figure 16: Radiosity differences mapped to Figure 17: Radiosity differences mapped to
2D circular textures. 3D solid textures.
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For comparing simulated and real animations, a gridded mesh is placed over the 2D animation
data. A normal coming out of the mesh plane at each grid point is then perturbed based on its
distance from key points and their positional errors. Using Euclidean distances, the positional
errors are calculated and used to perturb the mesh normals. Fig. 18 illustrates this technique.

For interpolation of vector data with magnitude and directional uncertainties, Fig. 19 uses
pseudo-coloring to map the magnitude uncertainties to arrow glyph colors, and angular uncer-
tainty to the background field.

Figure 19: Ocean currents in are shown with

¥ arrow glyphs whose colors are mapped to the

magnitude uncertainty. Background field in-
dicates angular uncertainty.

Figure 18: Vertex normals of mesh points
are bump mapped in the direction of local
sampled error.

3.5 Animation

Animation, as a general approach for visualizing uncertainty, is applicable to most applications,
including comparison of animation data and techniques. Uncertainty information can be visual-
ized by mapping them to animation parameters such as: speed or duration, motion blur, range
or extent of motion. We describe how animation is used for uncertainty visualization in the
context of our application domains.

For comparing surface radiosities, animation is used together with geometry modification
(translation and rotation). There are two possible mappings. The first (amplitude mapping)
is to translate or rotate the surface patches proportional to the differences on each patch. All
the patches are then animated in synchrony from their original position (and orientation) to
their maximum translated position (and rotated orientation). This gives an undulating motion
where the extent of motion or rotation is proportional to uncertainty. The second mapping
(frequency mapping) is to assign a fixed translation or rotation amount to all surface patches.
These are then animated in varying frequencies proportional to the differences on each patch.
This gives a more confusing animation, but the viewer’s attention is more easily drawn to fast
moving patches. Depth perception using both methods of animating surface patches in 3D are
enhanced with the aid of stereo glasses (e.g. Crystal Eyes).
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Several animation techniques can also be used for comparing animation data. Examples that
we have used to indicate uncertainty include random motion perturbation, motion blurring, and
particle systems. Fig. 20 shows particles being generated, traced, and aged from key points in
the human motion data. Initially a set of particles are randomly distributed around the key
points. The subsequent positions, velocities, and accelerations were calculated by gravitationally
attracting them towards their matching key points. Fig. 21 shows how motion blurring can be

used to indicate the range of motion paths between two path interpolation methods (linear and
cubic) over a 2D M-shaped set of key points.
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Figure 21: Animation with motion blurring
to indicate uncertainty.

Figure 20: Particles are used to trace out the
path of each joint.

For surface interpolation, animation is combined with other methods such as fat surfaces
and glyphs. Specifically, fat surfaces are made to oscillate between their extents. The animation
gives an impression of a thin surface growing thicker, and then thinner. Regions where the
surface appears to grow thick very rapidly catch the user’s attention and are indicative of
places of greater differences. Alternatively, glyphs can be added and removed randomly to give
a lively presentation of surface differences. Areas where the differences are larger will have
proportionately more activity than areas with smaller differences.

For flow visualization, we introduce two ways of using animation to present differences in
streamlines. Glyphs along the streamlines can be animated as the particle is advected along
its path. An even more interesting animation is to rank or order the animation according to
some user specified criteria, such as highest to lowest uncertainty. By presenting the difference
information in this manner, the user is immediately alerted to the areas of high inaccuracy.

This technique also identifies areas of equal uncertainty that are spatially apart quite well by
presenting them immediately one after one another. Fig.

22 is a snapshot using such an
animation method.

Animation can also be used to present the uncertainty information from the viewpoint of
a particle traveling along a streamline. Actually, the viewpoint is taken from the midpoint
between two streamlines. To understand this, imagine yourself being a particle traveling down
the midpoint between two streamlines. As you go down the path, the extremities (from the two
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calculated streamlines) will change in length and orientation. There are at least two alternative
coordinate frames to use. One is to move and orient the local particle coordinate frame along
the path trajectory. The other alternative is to simply translate the local particle coordinate
frame within the world coordinate frame. That 1s, the frame mapping is achieved by translating
the existing coordinate frame to the midpoint between the two streamlines at any given instant.
This simplifies calculations and also helps the viewer orient themselves with respect to the world.
Fig. 23 illustrates this method. This view is reminiscent of a twirling baton, hence the name.
The longer the baton, the higher the uncertainty in streamline position. More twirling to the
baton, the higher the uncertainty in the orientation.

Figure 22: Snapshot showing sections of Figure 23: Twirling baton display of differ-
streamlines with the same or higher differ- ences between two streamlines. Point of view
ences. of midpoint particle.

3.6 Sonification

Uncertainty can be examined by mapping uncertainty to sound. We have used sound in con-
junction with visualization to identify uncertainty. Sonification can often provide information
about data that cannot be seen using visualization. Sound can enhance a graphical presentation
by providing information about features of the data that may be hidden or occluded. Sound
can also help the user to distinguish the size relationships between objects that may be difficult
to determine visually because of projection distortion. In multivariate mappings, where visual
clutter can destroy the usefulness of the display, the addition of sound can provide relief for
the overloaded visual channel by allowing some variables to be presented aurally. Also, sound
can provide redundancy of representation and allow data validation. An excellent discussion
of additional benefits of auditory display in conjunction with other displays can be found in
[Kra94, MF95].

We have explored the use of sonification in visualizing uncertainty of flow visualization and
surface interpolation using LISTEN [LWS96]. LISTEN is a data sonification system that allows
interactive mapping of data to sound parameters such as pitch, duration, volume, and timbre.
Here, we describe two examples of sonifying uncertainty together with animation. In the first
example, a glyph was chosen to move along a desired path or curve in the surface interpolation
application, and along a streamline in the flow visualization application. The size (height or
the radius) of the glyph was mapped to uncertainty. However, in regions of low variations of
uncertainty, it was difficult to visually distinguish the size of glyphs. Therefore, uncertainty was
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mapped to duration thereby slowing the movement of the glyphs and prolonging the sound in
regions of high uncertainty. In another example, two different uncertainty parameters such as the
mean and Gaussian curvatures of two surface interpolants were mapped to the pitches of violin
and drum respectively. This sonification was played in conjunction with the presentation of
cross-hair glyphs, where the lengths of the cross-hairs were mapped to uncertainty in the mean
and Gaussian curvatures. This overloading of multivariate uncertainty information to visual
and aural cues helped in the understanding of the correlation between different uncertainty
parameters.

3.7 Psycho-Visual Approaches

This is probably the least understood and exploited group of methods that can be used for
uncertainty visualization, and visualization in general. Perhaps, the main reason is the difficulty
of eliciting a consistent impression or response from the subjects.

We have experimented with two different methods that fall under this category: “stereo-
pairs” and subliminal messages. With the aid of stereo glasses, a 3D stereo effect can be
achieved by quickly alternating the presentation of left and right views to the left and right
eyes. Using this technology, we may compare two slightly different images. The motivation
behind this is to make parts of the picture blurry, while other parts of the picture clear. If the
two images were 1dentical, we would lose the 3D stereo effect, but would still see a clear picture.
When this method was applied to comparing the radiosities on surface patches, we achieved the
desired effect of varying degree of clarity and blurriness. However, it was difficult to use this
method for an extended period of time as the visual system kept trying to resolve the conflicting
information arriving at both eyes, thereby resulting in eye strain.

The 1dea behind the use of subliminal messages was to see if we can open an additional chan-
nel to send information to the user. To this end, we experimented with flashing textual messages
in between screen refresh, as well as putting the messages in texture maps and wrapping them
onto objects in the rendered scenes. The textual messages (e.g. itchy and sneeze) were meant
to evoke immediate response from the viewers. Based on our very limited experimentation, we
were not able to get a repeatable and consistent set of responses.

While the findings in these two methods indicate some difficulties that still need to be
resolved, we think that psycho-visual approaches have great potential and need to be explored
further.

3.8 Summary

We have introduced a number of new methods for uncertainty visualization as presented in
Table 4. These methods are grouped using the characteristics from Table 1, and presented in
Table 5. From here, we can see that there is demand for research in techniques for vector and
tensor visualization, and that we have added techniques for discrete and continuous visualization
extents.

From our exploration of uncertainty visualization techniques, we have found that continuous
visualization extents are more challenging than discrete visualization techniques. We believe that
our grouping of methods into add glyph, add geometry, modify geometry, modify attributes,
etc. 1s a powerful means to understanding the different methods. There are also many new
techniques that are yet to be invented, but will likely fall into these categories.

In development of new techniques, it is important to evaluate them to determine if they are
more effective than existing techniques. We have worked on evaluation methodologies, and have
done a complete study of uncertainty glyphs. The new techniques that should survive are those
that are shown to be effective in encoding, and easily decoded by users. The basic methodology,
1s to use visual tests where users examine visualizations, and decode the information within the
graphic. The amount of error between the user interpretation and the encoding is statistically
evaluated to determine if the visualizations are effective. There is a developed theory of speci-

fiers, by Carswell [Car92], Cleveland [Cle85, CM86], and others which has shown that decoding
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length is the most accurate, decoding area is less accurate, etc. Decoding of pseudo-colors, bump
mapping, surface textures, etc. has not been shown to be straightforward yet. The evaluation
of the effectiveness of new techniques is time consuming, but important, and we feel it 1s a wide
open area for fundamental research in visualization.

In this section, we have presented a variety of tables that give different views of existing
visualization methods, and that contrast these with our new methods. The emphasis has been
to enumerate the state of the art as it exists, to clearly show what work needs to be done,
and to demarcate our contribution. The variety of uncertainty visualization techniques we have
illustrated in the images in this section show that there are more sophisticated methods than
side by side comparison techniques, or ignoring the uncertainty altogether. A very sophisticated
user may not need a visualization at all to understand a system under analysis, but visualization
1s for exploration of systems that we do not fully understand, and characterizing the uncertainty
visually helps in more complete understanding.

Value Visualization Extent
discrete | continuous

scalar glyphs fat surfaces, displacement,
(spheres, lines) affine transformations,

magnitude/frequency,
left /right, subliminal,
and multivariate methods below

multivariate || glyphs (ellipsoids) | material property, ribbons,
IFS, batons texture and bump mapping,
oscillate, ranking, batons

| vector || uncertainty glyphs | snow angel |

| tensor || | |

Table 5: New methods for uncertainty visualization and areas for further research

4 Conclusions

In this paper, a wide variety of new uncertainty visualization methods were introduced (adding
glyphs, adding geometry, modifying attributes, modifying geometry, animation, sonification,
and psycho-visual) and applied to many applications. The results of our research show there
is a tremendous variety of possible means to map uncertainty into a scene. The complexity
and hard work in deriving and understanding the uncertainty in the first place remains, but
hopefully we have demonstrated tools that may be helpful to more easily investigate uncertainty.
The approach of verity visualization where the technique for encoding the uncertainty is unam-
biguous, such as height glyphs for surface errors is not possible in all cases. The resultant data
overloading provides more of a burden on the end user, but the critical nature of using data
uncertainty while doing data analysis can be aided using our techniques.

We have done psycho-visual experiments for some of our approaches, and are working on
developing evaluations for our other techniques as well. The resulting visualizations of data and
uncertainty are integrated and present an accurate depiction to the user. We also found that
more than one uncertainty method can be used together, and that application specific methods
are relatively easy to generalize and be applied to different applications. Working with different
applications has allowed us to design uncertainty visualization methods that would not have
been otherwise apparent. As such, our current research efforts include:

1. Comparative visualization of experimental and simulated data for validation purposes.
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2. 4D data assimilation and ensemble forecasting to resolve measurement and forecast differ-
ences.

3. Extension of the uncertainty computation and visualization from structured grids to scat-
tered data sets, where the uncertainties are expected to be even more pronounced and
important in data interpretation.

4. Investigation of volume rendering methods for the purpose of designing comparative 3D
volume visualization methods. We plan to extend our work on 3D surface comparison
methods to 3D volume comparison methods and apply these to 3D volume rendered scenes
and 1mages.

5. Development of techniques for comparing 2D images. The application domain of 2D images
is large (e.g. compression algorithms, GIS, cartography, etc.) and work in this area can
be of potential significance.

We believe that these uncertainty visualization methods will prove valuable to people who need
to make informed decisions based on imperfect data.
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