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Abstract

Visualized data often have dubious origins and quality. Di�erent forms of uncertainty and er-

rors are also introduced as the data are derived, transformed, interpolated, and �nally rendered.

In the absence of integrated presentation of data and uncertainty, the analysis of the visualization

is incomplete at best and often leads to inaccurate or incorrect conclusions. This paper surveys

techniques for presenting data together with uncertainty. These uncertainty visualization tech-

niques present data in such a manner that users are made aware of the locations and degree of

uncertainties in their data so as to make more informed analyses and decisions. The techniques

include adding glyphs, adding geometry, modifying geometry, modifying attributes, animation,

soni�cation, and psycho-visual approaches. We present our results in uncertainty visualiza-

tion for environmental visualization, surface interpolation, global illumination with radiosity,


ow visualization, and �gure animation. We also present a classi�cation of the possibilities in

uncertainty visualization, and locate our contributions within this classi�cation.

Keywords: classi�cation, comparative visualization, di�erences, data quality, verity.

1 Introduction

With few exceptions, most of the visualization research has ignored or separated the presentation

of uncertainty from data. Part of the reason is the inherent di�culty in de�ning, characterizing,

and controlling the uncertainty in the visualization process. Another reason is the lack of meth-

ods that present uncertainty and data. We have seen this as an opportunity for research with

great potential in a wide variety of applications. Some examples are: comparative visualization

of experimental and simulation data, quantitative and visual analysis of image compression al-

gorithms, comparison of volume rendering algorithms and volumetric data sets, �nite element

analysis, data assimilation, ensemble forecasting, as well as those presented in this paper. The

common underlying problem in these areas is visually mapping data and uncertainty together

into a holistic view.

As a possible solution, one might consider setting free parameters to uncertainty values using

existing surface, volume, 
ow, and multi-dimensional visualization methods [CBB91]. In fact,

we do start with existing methods. However, even with the simple task of designing glyphs or

icons that incorporate uncertainty information [Bri84, Tuf90, WPL96, MM94], the process is

sometimes counter-intuitive. For example, while a glyph may appear appropriate by itself, the

user's perception of the glyph may be di�erent when a group of them is presented in various

scales and locations. Thus, while some of the methods we have examined are not necessarily new,
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they must be able to render and convey the data in complete accordance with the facts. This

has been recognized and is often stated as a worthy goal in scienti�c visualization (e.g. in the

IEEE Visualization discussions on How to Lie with Visualization, IEEE Visualization panels and

reports [GU95], and the NCGIA initiative on Visualization of Spatial Data Quality [BBC91]),

but it has rarely been pursued or realized. In our investigation of uncertainty visualization, our

approach has been to look at the needs of di�erent application areas and to develop methods

to address them. We found that in many instances, applications are orthogonal to methods.

That is, a method developed for an application may be applicable in other areas. At the

same time, an application may provide ideas for a visualization method that may not have

been apparent without the application context. A simple example would be animation as a

means to convey uncertainty information, and developing uncertainty visualization methods

for comparing modeled versus motion-captured animation data. Because of this synergy, new

applications provide ideas for more methods. The methods presented here represent signi�cant

steps toward achieving the goals of uncertainty visualization.

This paper is organized as follows: section 1.1 de�nes uncertainty visualization, and identi�es

the di�erent sources of uncertainty; section 2 classi�es methods for uncertainty visualization ;

section 3 presents our new uncertainty visualization methods; we then conclude this paper with

some more ideas for applications and methods of uncertainty visualization.

1.1 What is Uncertainty Visualization?

Uncertainty visualization strives to present data together with auxiliary uncertainty informa-

tion. These visualizations present a more complete and accurate rendition of data for users

to analyze. The methods employed in uncertainty visualization may range from overloading of

visual parameters such as those commonly found in multivariate visualization, to verity visual-

ization [WPL95, WPL96] where the display of both data and uncertainty is inseparable within

the same picture. Applications which can bene�t from uncertainty visualization are those where

there is a chance for uncertainty to be introduced in the visualization process, and where such

uncertainty matters. Depending on the intent or purpose of the visualization, these uncertainty

information may be presented in a subdued manner to serve as a subtle reminder of the pres-

ence of uncertainty to the users; or these uncertainty information may be highlighted and even

exaggerated to help in data comparison tasks. The ultimate goal of uncertainty visualization is

to provide users with visualizations that incorporate and re
ect uncertainty information to aid

in data analysis and decision making.

1.2 What is Uncertainty?

We de�ne uncertainty to include statistical variations or spread, errors and di�erences, minimum-

maximum range values, noisy, or missing data. This broad umbrella is intended to capture most

if not all the possible types and sources of uncertainty in data. NIST has written a standards

report [TK93] which identi�es four ways of expressing uncertainty. For the discussion in this

paper, we consider three types of uncertainty: statistical { either given by the estimated mean

and standard deviation, which can be used to calculate a con�dence interval, or an actual dis-

tribution of the data; error { a di�erence, or an absolute valued error among estimates of the

data, or between a known correct datum and an estimate; and range { an interval in which the

data must exist, but which cannot be quanti�ed into either the statistical or error de�nitions.

Note that the term data quality has an inverse relationship with data uncertainty [PFN94] and

hence can also take advantage of the techniques presented in this paper.

1.3 Sources of Uncertainty

In order to understand what is overlooked in visualization, we quickly review the sources of

uncertainty, errors, and ranges within data. Fig. 1 illustrates the three major blocks in a

visualization pipeline leading to the analysis of the visualization output. It is clear that di�erent
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forms of uncertainty are introduced into the pipeline as data are acquired, transformed, and

visualized.

UU U

Collect Derive Visualize

Data

Visualization

Figure 1: This visualization pipeline shows the introduction of data uncertainty from models and

measurements, derived uncertainty from transformation processes, and visualization uncertainty

from the visualization process itself.

Uncertainty in acquisition:

Starting with the data acquisition stage, one will note that nearly all data sets, whether from

instrument measurements, numerical models, or data entry have a statistical variation [Cha83].

With instruments, there is an experimental variability whether the measurements are taken by

a machine or by a scientist. The more times the measurement is taken, the more con�dent

the measurement. But there will be a statistical variation in these measurements. The same is

true for data from numerical models and human observations or inputs. In numerical modeling,

the model and its parameters have been decided by a domain specialist, and are inherently

a simpli�cation (e.g. linearization of a nonlinear system) of the system being modeled. In

addition to model simpli�cation and sensitivity of these models to input parameters, numerical

calculations performed on these models also introduce errors due to the choice of integration

algorithms and the limited precision of the computing machinery. Likewise, there is variability

in human observations both in terms of di�erence in perception among individuals and also to

slight di�erences when asked to perform a task repeatedly.

Uncertainty in transformation:

Often times, raw data are not rendered directly but are �rst subjected to further transfor-

mations with or without the knowledge of the person doing the visualization task. These data

transformation operations may be as simple as conversion from one unit of measure to another,

or may involve some algorithm to fuse one or more types of data together to derive a new data

type. Data transformation operations may occur as early as the data acquisition stage or later

in the visualization stage. Likewise, data may be rescaled, resampled, quantized, etc. either

prior to, or as part of, the visualization stage. The key point is that these transformations alter

the data from its original form, and have the potential of introducing some uncertainty.

Uncertainty in visualization:
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What is more interesting and perhaps not self evident is that uncertainty is also introduced

in the visualization stage itself. For instance, in global illumination of 3D scenes, radiosity algo-

rithms use approximations for calculating form factors. Some recent work in this area addressed

the issue of controlling the errors [GK94, LSG94, ATS94]. As these researchers also pointed out,

the rendering process introduces uncertainty arising from the data collection process, algorith-

mic errors, and computational accuracy and precision. Similarly, there are di�erent approaches

to direct volume rendering of 3D data sets [UH90, MMMY96] resulting in slightly di�erent ren-

derings of the same data set. The di�erences in the resulting images may be due to di�erent

ray traversal methods or the di�erent �lter functions used in splatting; or they may be due to

tetrahedralization or resampling processes; or they may be simply due to the tradeo�s between

speed and image quality.

Uncertainty introduced in the visualization process is not limited to radiosity and volume

rendering, but are also present in more routine operations. For example, the use of interpolation

is quite prevalent in taking slices through data sets, in contouring, as well as isosurface algorithms

[LC87, VGW94], to name a few. Surface approximation and interpolation is used in dealing

with scattered data sets [Lod96]. Here, a variety of tradeo�s exist in performance and accuracy,

and there is no ideal surface in many cases because of the many free parameters available

[Far88, LSPW96]. In many cases, the data that are to be interpolated have numerous errors,

and may even lack topology information [HDD

+

94].

Similar di�culties and range of choices produce uncertainty in 
ow visualization methods.

For example, di�erent integration methods, step sizes, orders, and seeding strategies lead to

slightly di�erent 
ow visualization results. E�ects of uncertainty are more pronounced in the

vicinity of or on critical points in the 
ow �eld. These di�erences may at times result in

drastically di�erent 
ow visualizations [DH96].

Animation allows visualization to include an additional parameter, usually time. Again,

there are several opportunities for uncertainty to be introduced. The process of in-betweening

to �ll in frames between key frames is analogous to surface interpolation, and though no method

is correct, there are many methods available, and all of them will result in slight variations.

Aside from di�erences arising from interpolation of positional information, potentially more

serious di�erences may arise from interpolation of orientation information depending on whether

quaternions or Euler angles are used.

While we have tried to identify the common and major culprits of how uncertainty are intro-

duced in the visualization pipeline, this is by no means an exhaustive list. Hopefully, this quick

enumeration will draw the attention of visualization designers and users to the potential pitfalls

of blindly using visualization methods without fully understanding the limitations and assump-

tions of each method. We next turn our attention to classifying visualization approaches, then

uncertainty visualization approaches, and �nally presenting several new methods for uncertainty

visualization.

2 Classi�cation of Methods

To classify uncertainty visualization approaches, we �rst consider more general classi�cations.

Keller and Keller [KK93] classify visualization by using a taxonomy of visualization goals. Tufte

[Tuf83] classi�es visualizations by developing evaluation and analysis methods such as data-ink

maximization. Carswell [Car92] and Cleveland [Cle85, CM86] use evaluation as a basis for the

theory of speci�ers, that fundamental parameters, length, area, ratios, etc. describe and deter-

mine the e�ectiveness of visualization. Bergeron and Grinstein [BG89] introduce a classi�cation

that uses lattice arrangements of data. Brodlie [BCE

+

92] describes a classi�cation based on the

dimensionality of the entity that is being visualized. Application speci�c visualization classi�-

cations have been done by Hesselink et al. [HPvW94] for vector and tensor �eld visualization.

We create a classi�cation system that is similar to the systems of Brodlie and Hesselink et al.

in certain aspects, but is extended to accommodate uncertainty visualization techniques. Brodlie

classi�es techniques using two characteristics. First, he uses the underlying �eld, where data may
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be grouped as dependent or independent variables, and classi�ed as having ordinal or nominal

values. Second, he uses the view, which is an operation on the underlying �eld to produce a

pictorial representation. For example, generating a set of contour lines for a given height �eld, or

generating the surface representation of the height �eld. Hesselink et al. classify techniques using

three characteristics. First, they use the order of the data: scalar, vector, or tensor (three data

orders). Second, they use the spatial domain of the visualization objects: point, line, surface,

or volume (four domains). Third, they introduce the information level of the data: elementary,

local, and global (three information levels). However, these classi�cations do not account for

di�erent types of uncertainty information or techniques. In order to incorporate uncertainty

information into visualization schemes, we propose a classi�cation with �ve characteristics:

value, location, data extent, visualization extent, and axes mapping. Each of these concepts are

de�ned below.

1. Value of datum and its associated value uncertainty (scalar, vector, tensor, multivariate).

The data value, y, may be characterized as a scalar, a vector, a tensor or a multivariate

variable. A multivariate variable has several components, each of which can be a scalar, a

vector or a tensor. In our classi�cation scheme, value includes possible uncertainties asso-

ciated with each data value. For example, y = [y

1

; y

2

; :::; y

m

] can be used to represent data

values that are multi-valued scalars, vectors, or tensors. Likewise, U

y

= [u

y

1

; u

y

2

; :::; u

y

m

]

can be used to represent corresponding uncertainties in data value. Value corresponds to

the dependent variables of Brodlie's underlying �eld and the order of Hesselink et al.

2. Location of datum and its associated positional uncertainty (0D, 1D, 2D, 3D, time, etc.).

This characteristic identi�es the dimensionality of the space in which the data resides.

It speci�es how many independent variables are used to describe each data value. For

example, 0D ,1D, ... nD and time. In our classi�cation scheme, this description is extended

to include positional uncertainty. For example, if an n-dimensional datum has a value y, it

can be speci�ed as y = f(x

1

; x

2

; :::; x

n

), while its corresponding positional uncertainty may

be speci�ed by U

x

= [u

x

1

; u

x

2

; :::; u

x

n

]. Location corresponds to the independent variables

of Brodlie's underlying �eld.

3. Extent of datum location and value (discrete or continuous).

The data extent corresponds to the distribution, range, interval, or period over which

data is valid. For example, if a highly 
uctuating variable such as wind velocity was

measured and averaged over time, the time window would specify the time extent (extent

of location); the distribution of wind readings and the range of wind readings over this

time period would specify the velocity extent (extent of value). On the other hand, extent

may also be used to specify an interval of acceptable values (e.g. 0 ... 255) for each datum.

That is, value extent of y can be expressed as E

y

= [e

y

1

; e

y

2

; :::; e

y

m

], where each e

y

i

can be

an interval or a distribution de�ned over the location extent E

x

= [e

x

1

; e

x

2

; :::; e

x

n

], where

the location extent itself can be a range or distribution or some more complicated function

of the data location. Varying data extents are common for sampled medical data in terms

of the sample spacing, and common in environmental data in terms of the time averaging

involved. For our purposes, we distinguish between two types of data extents { discrete

and continuous. A discrete extent implies that data are valid at discrete domain values

only, while a continuous extent implies data are valid through a continuous domain. An

example of a discrete data extent is the population count associated with U.S. cities, while

an example of a continuous data extent is the surface of the earth { where population can

also be represented. Data extent corresponds roughly to the information level of Hesselink

et al.

4. Visualization extent (discrete or continuous).

The visualization primitive extent determines whether individual datums are indicated or

whether a continuous range of data are indicated. The visualization extents are grouped

into discrete (includes points and glyphs) and continuous (includes curves, surfaces, vol-

umes). Animation is orthogonal to these two. That is, animation can be used with both
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discrete or continuous visualization extents. The choice of the visualization primitive ex-

tent is independent of the actual underlying extent of the data. For example, �tting a

continuous line through a plot of heights of students in a class is a continuous visualization

extent of a discrete data set. The data extent is independent of the visualization extent,

though some mappings are more natural and useful than others. It is important to note

that discrete visualization extents, such as glyphs, can be used with continuous data, and

that continuous visualization extents such as parallel coordinate display [Ins85, ID90] can

be used with discrete data. Visualization extent corresponds with views of Brodlie and

domain of Hesselink et al.

5. Axes mapping de�nes visualization mapping (experiential or abstract).

It allows di�erent variables or grouping of variables to be mapped together or to di�erent

axes. For example, one can use data values in place of location values for coordinate axes

such as in a scatter plot, in order to investigate cause and e�ect relationships; or investigate

the location using a spatial plot with the dependent variable(s) being visualized; humidity

and temperature values can be treated as vector components; etc. Axes mapping allows

two basic approaches to visualization: experiential rendering is to replicate the viewer's

experience with the visualized phenomenon. Abstract rendering is to plot the data in a

non-experience based mapping, which may result in additional insight and understanding.

Both these visualization approaches may be used for uncertainty visualization to show

what the true variations in the mapped axes are. Essentially, in multi-valued data sets,

some projection of the n-dimensional data set must be used to produce a typically 2-

dimensional visualization, perhaps over time, and there is considerable 
exibility in the

mapping beyond the experiential/abstract demarcation we use in this section.

Value Visualization Extent

discrete continuous

scalar glyphs (error bars, box plots, pseudo-coloring, di�erence images,

Tufte quartile plots) side-by-side, contour lines, blinking

multivariate Cherno� faces, scatter plots side-by-side, di�erence images

vector glyphs modi�ed streamlines/ribbons/tubes,

(modi�ed tensor probes) modi�ed LIC

tensor glyphs modi�ed hyperstreamlines

(modi�ed tensor probes)

Table 1: Existing and likely uncertainty visualization techniques.

Table 1 uses two characteristics (value and visualization extent) to classify existing uncer-

tainty visualization methods. The other characteristics explain and demarcate the space in

which visualization methods can be classi�ed. The methods provided in the table can be shared

across the other characteristics where deemed appropriate. A complete table for all the �ve

characteristics is hard to display in two dimensions. Therefore, for sake of simplicity of presen-

tation, we have chosen the two most representative characteristics that separate methods. The

listing of all of the characteristics is the complete classi�cation, and must be used to quantify a

given uncertainty visualization technique.

Table 1's upper left cell, contains the most thoroughly researched statistical visualization

work: the visualization of a scalar value and its uncertainty, such as the median, quartiles, and

outliers of a statistically evaluated variable. If visualized with a discrete visualization extent,

the variety of statistical plotting tools is impressive, including glyphs, with various attributes set

to denote values, where attributes are the shape, color, etc. of a graphical speci�er. We discuss

attributes in more details in Section 3. Error bars can show the range of the data, and represent

a glyph to show uncertainty that works well with the discrete visualization extent. A discrete
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visualization extent can be formed either directly from discrete data, or densely sampled data

that is sub-sampled, or continuous phenomena/data that is sub-sampled. The mapping of data

makes it possible to visualize a given data set with many techniques, converting discrete data

to continuous representation and vice versa.

Scalar data may also be visualized with methods that are continuous visualization extents,

meaning they impart the e�ect that the phenomena is not discrete. For example, a discrete

representation of data in a plot is to plot with points, while a continuous representation of those

same points is to plot with a smoothly varying line that passes through the points. For this

reason the scalar row, continuous visualization extent, cell in the upper right of the table, shows

attributes of lines, contours, etc. to map the uncertainty to color or line style. Note, that the

dimension of the data domain has not been chosen for the table, because higher dimensional

domains have nice analogues, such as the transition from lines, to contours, to isosurfaces for

1D, 2D, and 3D.

The rest of the table shows those methods that deal with higher order data, including multi-

variate, vector, and tensors. A multivariate variable is simply a number, n, of scalar values that

are to be simultaneously visualized, and encompasses the traditional multiple valued visualiza-

tion methods, in addition to visualizing their uncertainty. Complex (real plus imaginary) data

are typically handled with this approach as well. The vector is distinguished from the multi-

variate because it is less general, and there are data sets that are directly vector data sets. Flow

visualization, wind, currents, etc. are of this type, and the assumptions in the visual mappings,

and the techniques used are di�erent than for the multivariate. Tensor uncertainty visualization

takes the meaning of the multiple values and their uncertainty to be tensors. Because the most

general method is the multivariate, vector and tensor data sets can use the multivariatemethods.

The reverse is also true, but the interpretation may not be correct, as in visualizing �nancial

data as vectors. There are not many existing techniques for higher order data with continuous

visualization extents. We now describe some existing uncertainty visualization methods and

how they �t into our classi�cation.

Many researchers are fully aware of the uncertainty, usually in the form of errors, in their

data. These are usually displayed using some straightforward method such as side by side

comparison or di�erencing. For example, Lischinski et al. [LSG94] used line plots to render

uncertainty, Greene et al. [GK94] used di�erence images, and Arvo et al. [ATS94] used norms

for the entire image. In surface interpolation, Hagen et al. [HHS

+

92] used pseudo-coloring of

the surface curvature and other properties of the surface. This is an example of scalar value

(�rst row) continuous extent visualization (second column) in Table 1.

In geographic and information systems (GIS), researchers are aware of the statistical varia-

tion, and have employed a range of techniques to display this information. For example, aside

from pseudo-coloring areas of maps to represent value uncertainty, they may also use contour

lines to indicate regions of similar con�dence levels. For cartographers, the contours may be for

areas of similar spatial distortions from projections. Fisher [Fis94] proposed animation tech-

niques such as blinking data points to represent data uncertainty. Gershon [Ger92] proposed

animation for the display of uncertainty in fuzzily classi�ed regions. These are examples of

scalar value (�rst row) continuous visualization extent (second column).

We have not seen any visualization methods designed for presenting uncertainty information

for vector or tensor data. However, some existing vector and tensor visualization methods can

be modi�ed to include uncertainty information. For example, tensor probes [dLvW93] with dis-

crete visualization extents can be easily modi�ed to incorporate uncertainty information. For

continuous visualization extents, line integral convolution (LIC) [FC95] can use the uncertainty

information to modulate the texture. Likewise, adding more variables into existing 
ow visu-

alization methods such as streamlines result in streamballs [BHR

+

94], and to hyperstreamlines

[DH93] as well.

The taxonomy of existing methods of displaying uncertainty are summarized in Table 2. Our

classi�cation of uncertainty visualization techniques demonstrates that only the scalar value dis-

crete visualization extent, or upper left entry in Table 1 has been adequately explored, where
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the uncertainty may be shown with economy using Tukey's box plots [Tuk77], Tufte's quartile

plots [Tuf83] and/or Cleveland's framed rectangles [Cle85]. What we describe in the following

section are new methods for displaying higher dimensional uncertainty (e.g. a vector of uncer-

tainty parameters) in surfaces and in animation applications. The primary methods we discuss

are adding glyphs (Section 3.1), adding geometry (Section 3.2), geometry modi�cation (Section

3.3), attribute modi�cation (Section 3.4), animation (Section 3.5), soni�cation (Section 3.6),

and psycho-visual approaches (Section 3.7).

Technique Value Location Data extent Vis extent Axes mapping

side-by-side any 2D or 3D any any experiential

di�erence image scalar 2D, 3D, or time any continuous experiential

pseudo-color scalar 2D or 3D any any experiential

contour lines scalar 2D any continuous experiential

blinking scalar 2D any any experiential

scatter plot multivariate nD any discrete abstract

Table 2: Taxonomy of some existing uncertainty visualization methods as used in di�erent appli-

cations

3 Uncertainty Visualization Methods

We have developed a variety of new uncertainty visualization methods. These are organized

into a table showing general approach versus application domain (Table 3), as well as their

classi�cation according to the �ve characteristics listed in the previous section (Table 4). Entries

in Table 3 indicate methods that can be used for an application. The presentation below is

organized by general approach, with detailed description of how a particular method and its

relationship to our classi�cation scheme in Table 1. But �rst, we describe the four di�erent

applications that we have investigated, focusing on their relevance to uncertainty visualization

and the type of uncertainty in each case.

Approach Application

Radiosity Animation Interpolation Flow

Add glyphs spherical ladders uncertainty ellipsoidal

Add geometry snow angels fat surfaces, bumps ribbons

Modify geometry a�ne transform IFS, displacement

Modify attributes re
ectivity, textures bump mapping pseudo-color

Animation magnitude, frequency oscillate oscillate batons, ranking

Soni�cation pitch, instrument duration

Psycho-Visual left/right subliminal

Table 3: Some uncertainty visualization methods for a range of applications

Radiosity:

There are several motivations for comparing results from di�erent radiosity algorithms. The

main motivation is that, like direct volume rendering, radiosity calculations can be expensive

and hence numerous works in this area have focused on di�erent approximations to speed up

the calculations. Competing results are often displayed side by side and the burden is placed

on the user to identify the regions and extent of di�erence. Since rendering is an integral part
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of the visualization process, we need to understand how these di�erent forms of approximation

in
uence the �nal picture. Another motivation for this application is its similarity to other

applications. That is, radiosity is concerned with calculation of surface radiosities of a static

3D scene. The ability to highlight di�erences between competing methods on these surfaces can

bene�t other applications such as �nite element analyses of structural components.

Animation:

In this particular application, we are interested in comparing two sets of animation data:

modeled human motion versus motion-captured human motion. Positional data are available

for key points of the body, such as head, hips, extremities, etc. However, the data could just as

well be from other sources such as comparing animations using di�erent interpolation methods,

or from other applications such as di�erent paths of streamlines in 
ow visualization. From

a modeling point of view, it is important to understand how the modeled motions di�er from

actual human motions (or how one streamline is di�erent from another streamline, etc.) in order

to improve the animation model.

Interpolation:

In dealing with environmental data sets, one often encounters sparse and scattered data.

The dispersion and sparsity of the data points are often attributed to the accessibility of the

sites and the cost of the instruments that collect them. In an ideal situation, the �eld would be

populated with enough instrumentation to sample the �eld at su�cient resolution to capture

the phenomenon of interest. In reality, we have to approximate and/or interpolate the �eld

based on the limited number of data points. Because the choice of interpolation algorithm can

substantially in
uence the appearance of the interpolated �eld, it is important to understand

how the distribution of data location as well as data values in
uence the performance of di�erent

algorithms.

Flow visualization:

There are several 
ow visualization software packages where users are given the option of

selecting di�erent integration methods, integration time interval, integration directions, etc.

This 
exibility may actually be detrimental if the user does not fully understand the impact of

these choices on the resulting 
ow visualization.

Table 3 shows the four application areas discussed as columns, and a classi�cation of uncer-

tainty visualization methods along rows. We have split techniques into seven fundamental areas

which provide a separation of means by which information are encoded into a visualization. The

following sections describe each area and relate them to the applications.

3.1 Add Glyphs

A glyph is a geometrically plotted speci�er that encodes data values. Glyphs encode information

through their shape and/or color. An example would be arrow glyphs, which are used to visual-

ize magnitude and directional information in vector �elds. Glyphs can also be used to visualize

uncertainty in a variety of ways. We have investigated glyphs in the following applications,

radiosity [PF96], vector �elds [WPL96, WSF

+

95], surface interpolation [LSPW96], 
ow visu-

alization [LPSW96], and key-framed animation [WPL95]. The primary issues in using glyphs

for visualizing uncertainty are the sampling frequency/location and the placement orientation

(e.g. [TB96]). For most of our applications to date, we have been able to specify the orientation

through the nature of the data being presented. For example, in interpolation of a height �eld,

there is going to be uncertainty in the heights, and the glyphs are therefore oriented vertically

to indicate this height variation.

Glyphs in radiosity have included spheres whose radii are scaled to the di�erence in di�erent

radiosity solutions. For multivariate uncertainty information, ellipsoidal or more complicated

9



Technique Value Location Data extent Vis extent Axes mapping

material prop scalar 3D discrete surface experiential

texture mapping scalar 3D discrete surface, volume experiential

spherical scalar 3D discrete point experiential

a�ne transform scalar 3D discrete surface experiential

mag/freq scalar 3D discrete surface and anim experiential

left/right scalar 3D discrete surface experiential

bump mapping multivariate 2D and time discrete surface experiential

snow angels vector 2D and time discrete surface experiential

oscillation multivariate 2D and time discrete point, curve, anim experiential

uncertainty glyph vector 1D or 2D continuous point experiential

fat surfaces scalar 2D or 3D continuous surface, volume experiential

IFS multivariate 1D, 2D, or 3D discrete continuous experiential

displacement scalar 2D or 3D continuous surface experiential

instrument scalar 1D discrete point abstract

subliminal nominal 2D or 3D discrete surface experiential

ellipsoidal multivariate 3D and time continuous point experiential

ribbons multivariate 3D and time continuous surface experiential

batons multivariate 3D and time continuous point, curve, anim experiential

ranking multivariate 3D and time continuous curve and anim experiential

duration scalar 1D or time discrete curve or anim experiential

Table 4: New uncertainty visualizations methods as applied to our applications

glyphs can be used together with color. Fig. 2 shows an example where the di�erences from

two radiosity solutions are visualized with spherical glyphs.

Glyphs in vector �elds have been custom designed to encode the magnitude and bearing

uncertainties. We have worked with maximumlikelihood output from ocean radars, wind sensing

radars, and interpolated winds from scattered stations. Fig. 3 shows how uncertainty vector

glyphs are used to visualize vector �elds with derived magnitude and directional uncertainty

information.

Glyphs in surface interpolation have been used to compare interpolants such as bilinear,

multi-quadric, and Shepard's. The length of the glyph is scaled to the di�erence between the

interpolants. Fig. 4 shows how such line glyphs do pairwise comparisons of the interpolated

surfaces.

Glyphs in 
ow visualization have been used to show the deviation of 
ow solvers. Fig. 5

shows the use of glyphs to compare Eulerian integration versus Runge-Kutta, where the length

of the glyph is the di�erence between two solvers.

Glyphs in key-framed animation have been used in a similar fashion to the 
ow visualization.

They are used to illustrate path di�erences arising from using di�erent interpolation methods.

The variety of applications that use glyphs for uncertainty visualization, as well as the variety

of encodings possible with glyphs, make this method highly successful, and extensible to many

other applications.

3.2 Add Geometry

Uncertainty can be visualized in certain applications by adding geometry to rendered scenes.

While glyphs do add geometry, they are placed at discrete locations. Adding geometry is

used to denote a more continuous representation of data. Techniques include contour lines,

isosurfaces, streamlines, and swept surfaces and volumes. Some extensions of these techniques

for uncertainty visualization are described below.
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Figure 2: Spherical glyphs scaled to radiosity

di�erences.

36.30

36.40

36.50

36.60

36.70

36.80

36.90

37.00

-122.50 -122.40 -122.30 -122.20 -122.10 -122.00 -121.90 -121.80

Figure 3: Uncertainty vector glyphs over

Monterey Bay.

Figure 4: Line glyphs show di�erence be-

tween bilinear and multi-quadric interpo-

lated surfaces.

Figure 5: Line glyphs tile particle positions

along streamlines computed by two di�erent

integration methods.
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To show the di�erences between two methods of scattered data interpolation, a fat surface

can be created by sweeping one surface to the other. This is illustrated in Fig. 6 where a cross

sectional cut reveals varying thickness across the surface.

Figure 6: Fat surfaces showing the di�erence

between the bilinear and multi-quadric in-

terpolations. The cross sectional slice shows

how fat surfaces can be used to exaggerate

the di�erence.

Figure 7: Surface patches are split into four

pieces and displaced vertically according to

radiosity di�erences.

Fig. 7 illustrates a variation where geometry is added on a per patch basis instead of over the

entire region in order to show the radiosity di�erences on each patch. The patches are divided

into 4 smaller patches and are displaced vertically at their centers by an amount proportional

to the di�erence. Rather than displacing them up or down according to the signed di�erence, a

red/green coloring scheme is used instead. Together with a movable light source (black sphere),

the user can examine di�erent areas in more detail.

For 
ow visualization applications, geometry is added in the form of uncertainty ribbons, rep-

resenting the extent between two streamlines calculated from two di�erent integration methods.

See Fig. 8.

When comparing two sets of character animation, line segments are used to connect key

points of the body. The area bordered by corresponding line segments of the simulated data

and the motion-captured data are then used to sweep out an area on the same plane as the

animation data. This is illustrated in Fig. 9 and is similar to having each stick �gure do a snow

angel one after the other over the same location. Regions which have less depression indicate

more variance.

3.3 Modify Geometry

Uncertainty can be visualized by modifying geometry in a scene. Geometry may be translated,

scaled, rotated, or generally warped or distorted. They may also be displaced, subdivided or

re�ned.

Simple a�ne transformations, such as translation and rotation, have been used to indicate

uncertainty in the data. For the radiosity application, the surface patches are either translated

in or out according to the radiosity di�erence calculated by two di�erent form factor methods

(Fig. 10), or rotated up to a maximum of 90 degrees (Fig. 11).

12



Figure 8: Uncertainty ribbons are used to

show the deviations and twisting between

two streamlines generated by di�erent inte-

gration methods.

Figure 9: Snow angels are marks left on the

ground by sweeping out limb segments. The

amount of depression, which is mapped to

gray level above, corresponds to the similar-

ity in the two animation data sets.

Figure 10: Surfaces patches are translated in

or out of their original positions to highlight

di�erences.

Figure 11: Surfaces patches are rotated in-

stead of translated giving a similar e�ect.
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Fractal interpolation using iterated function systems (IFS) is an additional method we have

used to impart uncertainty into the visualization. The interpolation method used in the recon-

struction of sampled data sets during rendering impacts the interpretation of the data. We have

found that smooth interpolations sometimes impart the message that the data itself represents

a smooth phenomenon, or that there was a higher density of data collected than indicated.

We developed interpolation methods to demonstrate uncertainty through the roughness of the

surface or the variation in the volume [Wit95]. Fig. 12 shows a fractal interpolation of 2D scalar

samples.

Similar to Fig. 12, Fig. 13 produces a bumpy looking surface. This is achieved by displacing

the surface up or down according to the scaled di�erence between di�erent surface reconstruction

methods. The location and frequency of the bumps give an indication of the location and

magnitude of deviation between the two methods of interpolation.

Figure 12: IFS surface interpolation of scat-

tered data.

Figure 13: Bumpy looking surface created by

simple facet displacement.

3.4 Modify Attributes

Uncertainty can be visualized by modifying attributes of geometry in the rendered scene. At-

tributes include the bidirectional re
ectance distribution function (BRDF) and other means of

controlling the shading such as pseudo-coloring. The control of the shading and coloring pro-

vides several parameters that can be mapped to uncertainty. The simplest is to use a color

lookup table approach where a color palette is used to map uncertainty values to di�erent colors

on the visualization primitives. This approach can be used to pseudo-color surfaces, streamlines,

glyphs, and animation characters. Additional parameter control is possible through variables

in the shading process. Examples include mapping di�erent re
ectivity coe�cients, such as

specular and di�use, to uncertainty values in order to alter the appearance of the visualiza-

tion primitive. Another example would be manipulation of surface normals, similar to bump

mapping, and in combination with lighting controls to provide indications of uncertainty [PA95].

Below are some examples that illustrate how modifying attributes can be used to incorporate

uncertainty. For comparing the di�erence between the radiosities on a surface resulting from two

di�erent methods of form factor calculations, material properties of the polygon can be altered

to make it either more or less di�use or specular according to the di�erence on the polygon.

For example, di�erences can be scaled to range from 0 to 1, and then mapped as di�use and

specular coe�cients, such that the polygon with the least di�erence is assigned di�use and
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specular coe�cients of 0, and the one with the largest di�erence is assigned coe�cients of 1.

Fig. 14 illustrates how mapping di�erences to di�use coe�cients will make those surface patches

with higher di�erences appear brighter. Fig. 15 maps di�erences to specular coe�cients. Note

that the surfaces are rendered in connection with a movable light source. If the light source

is tied to the camera or eye position, then altering specular coe�cients allows one to focus on

planes parallel to the viewing plane. Altering the specular coe�cients is a better tool if the user

is interested in viewing a particular area but altering the di�use coe�cients is better for viewing

the error associated with the entire image.

Figure 14: Altering di�use coe�cients ac-

cording to di�erence.

Figure 15: Altering specular coe�cients ac-

cording to di�erence.

Aside from the use of shading, lighting, and coloring parameters to alter the attributes, and

hence, the appearance of visualization primitives for uncertainty visualization, embellishments

such as textures can also be used to combine uncertainty information in visualization products.

Using the same data set, Figs. 16 and 17 illustrate how the di�erences can be mapped to 2D and

3D textures respectively. Each surface patch in the scene is texture mapped with either a 2D

circular pattern or a 3D conical shape. Where the di�erences are smaller, several smaller circles

(or solid textures) are mapped; and where the di�erences are larger, larger circles or portions

of circles (or solid textures) appear.

Figure 16: Radiosity di�erences mapped to

2D circular textures.

Figure 17: Radiosity di�erences mapped to

3D solid textures.
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For comparing simulated and real animations, a gridded mesh is placed over the 2D animation

data. A normal coming out of the mesh plane at each grid point is then perturbed based on its

distance from key points and their positional errors. Using Euclidean distances, the positional

errors are calculated and used to perturb the mesh normals. Fig. 18 illustrates this technique.

For interpolation of vector data with magnitude and directional uncertainties, Fig. 19 uses

pseudo-coloring to map the magnitude uncertainties to arrow glyph colors, and angular uncer-

tainty to the background �eld.

Figure 18: Vertex normals of mesh points

are bump mapped in the direction of local

sampled error.

Figure 19: Ocean currents in are shown with

arrow glyphs whose colors are mapped to the

magnitude uncertainty. Background �eld in-

dicates angular uncertainty.

3.5 Animation

Animation, as a general approach for visualizing uncertainty, is applicable to most applications,

including comparison of animation data and techniques. Uncertainty information can be visual-

ized by mapping them to animation parameters such as: speed or duration, motion blur, range

or extent of motion. We describe how animation is used for uncertainty visualization in the

context of our application domains.

For comparing surface radiosities, animation is used together with geometry modi�cation

(translation and rotation). There are two possible mappings. The �rst (amplitude mapping)

is to translate or rotate the surface patches proportional to the di�erences on each patch. All

the patches are then animated in synchrony from their original position (and orientation) to

their maximum translated position (and rotated orientation). This gives an undulating motion

where the extent of motion or rotation is proportional to uncertainty. The second mapping

(frequency mapping) is to assign a �xed translation or rotation amount to all surface patches.

These are then animated in varying frequencies proportional to the di�erences on each patch.

This gives a more confusing animation, but the viewer's attention is more easily drawn to fast

moving patches. Depth perception using both methods of animating surface patches in 3D are

enhanced with the aid of stereo glasses (e.g. Crystal Eyes).
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Several animation techniques can also be used for comparing animation data. Examples that

we have used to indicate uncertainty include random motion perturbation, motion blurring, and

particle systems. Fig. 20 shows particles being generated, traced, and aged from key points in

the human motion data. Initially a set of particles are randomly distributed around the key

points. The subsequent positions, velocities, and accelerations were calculated by gravitationally

attracting them towards their matching key points. Fig. 21 shows how motion blurring can be

used to indicate the range of motion paths between two path interpolation methods (linear and

cubic) over a 2D M-shaped set of key points.

Figure 20: Particles are used to trace out the

path of each joint.

Figure 21: Animation with motion blurring

to indicate uncertainty.

For surface interpolation, animation is combined with other methods such as fat surfaces

and glyphs. Speci�cally, fat surfaces are made to oscillate between their extents. The animation

gives an impression of a thin surface growing thicker, and then thinner. Regions where the

surface appears to grow thick very rapidly catch the user's attention and are indicative of

places of greater di�erences. Alternatively, glyphs can be added and removed randomly to give

a lively presentation of surface di�erences. Areas where the di�erences are larger will have

proportionately more activity than areas with smaller di�erences.

For 
ow visualization, we introduce two ways of using animation to present di�erences in

streamlines. Glyphs along the streamlines can be animated as the particle is advected along

its path. An even more interesting animation is to rank or order the animation according to

some user speci�ed criteria, such as highest to lowest uncertainty. By presenting the di�erence

information in this manner, the user is immediately alerted to the areas of high inaccuracy.

This technique also identi�es areas of equal uncertainty that are spatially apart quite well by

presenting them immediately one after one another. Fig. 22 is a snapshot using such an

animation method.

Animation can also be used to present the uncertainty information from the viewpoint of

a particle traveling along a streamline. Actually, the viewpoint is taken from the midpoint

between two streamlines. To understand this, imagine yourself being a particle traveling down

the midpoint between two streamlines. As you go down the path, the extremities (from the two
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calculated streamlines) will change in length and orientation. There are at least two alternative

coordinate frames to use. One is to move and orient the local particle coordinate frame along

the path trajectory. The other alternative is to simply translate the local particle coordinate

frame within the world coordinate frame. That is, the frame mapping is achieved by translating

the existing coordinate frame to the midpoint between the two streamlines at any given instant.

This simpli�es calculations and also helps the viewer orient themselves with respect to the world.

Fig. 23 illustrates this method. This view is reminiscent of a twirling baton, hence the name.

The longer the baton, the higher the uncertainty in streamline position. More twirling to the

baton, the higher the uncertainty in the orientation.

Figure 22: Snapshot showing sections of

streamlines with the same or higher di�er-

ences.

Figure 23: Twirling baton display of di�er-

ences between two streamlines. Point of view

of midpoint particle.

3.6 Soni�cation

Uncertainty can be examined by mapping uncertainty to sound. We have used sound in con-

junction with visualization to identify uncertainty. Soni�cation can often provide information

about data that cannot be seen using visualization. Sound can enhance a graphical presentation

by providing information about features of the data that may be hidden or occluded. Sound

can also help the user to distinguish the size relationships between objects that may be di�cult

to determine visually because of projection distortion. In multivariate mappings, where visual

clutter can destroy the usefulness of the display, the addition of sound can provide relief for

the overloaded visual channel by allowing some variables to be presented aurally. Also, sound

can provide redundancy of representation and allow data validation. An excellent discussion

of additional bene�ts of auditory display in conjunction with other displays can be found in

[Kra94, MF95].

We have explored the use of soni�cation in visualizing uncertainty of 
ow visualization and

surface interpolation using LISTEN [LWS96]. LISTEN is a data soni�cation system that allows

interactive mapping of data to sound parameters such as pitch, duration, volume, and timbre.

Here, we describe two examples of sonifying uncertainty together with animation. In the �rst

example, a glyph was chosen to move along a desired path or curve in the surface interpolation

application, and along a streamline in the 
ow visualization application. The size (height or

the radius) of the glyph was mapped to uncertainty. However, in regions of low variations of

uncertainty, it was di�cult to visually distinguish the size of glyphs. Therefore, uncertainty was
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mapped to duration thereby slowing the movement of the glyphs and prolonging the sound in

regions of high uncertainty. In another example, two di�erent uncertainty parameters such as the

mean and Gaussian curvatures of two surface interpolants were mapped to the pitches of violin

and drum respectively. This soni�cation was played in conjunction with the presentation of

cross-hair glyphs, where the lengths of the cross-hairs were mapped to uncertainty in the mean

and Gaussian curvatures. This overloading of multivariate uncertainty information to visual

and aural cues helped in the understanding of the correlation between di�erent uncertainty

parameters.

3.7 Psycho-Visual Approaches

This is probably the least understood and exploited group of methods that can be used for

uncertainty visualization, and visualization in general. Perhaps, the main reason is the di�culty

of eliciting a consistent impression or response from the subjects.

We have experimented with two di�erent methods that fall under this category: \stereo-

pairs" and subliminal messages. With the aid of stereo glasses, a 3D stereo e�ect can be

achieved by quickly alternating the presentation of left and right views to the left and right

eyes. Using this technology, we may compare two slightly di�erent images. The motivation

behind this is to make parts of the picture blurry, while other parts of the picture clear. If the

two images were identical, we would lose the 3D stereo e�ect, but would still see a clear picture.

When this method was applied to comparing the radiosities on surface patches, we achieved the

desired e�ect of varying degree of clarity and blurriness. However, it was di�cult to use this

method for an extended period of time as the visual system kept trying to resolve the con
icting

information arriving at both eyes, thereby resulting in eye strain.

The idea behind the use of subliminal messages was to see if we can open an additional chan-

nel to send information to the user. To this end, we experimented with 
ashing textual messages

in between screen refresh, as well as putting the messages in texture maps and wrapping them

onto objects in the rendered scenes. The textual messages (e.g. itchy and sneeze) were meant

to evoke immediate response from the viewers. Based on our very limited experimentation, we

were not able to get a repeatable and consistent set of responses.

While the �ndings in these two methods indicate some di�culties that still need to be

resolved, we think that psycho-visual approaches have great potential and need to be explored

further.

3.8 Summary

We have introduced a number of new methods for uncertainty visualization as presented in

Table 4. These methods are grouped using the characteristics from Table 1, and presented in

Table 5. From here, we can see that there is demand for research in techniques for vector and

tensor visualization, and that we have added techniques for discrete and continuous visualization

extents.

From our exploration of uncertainty visualization techniques, we have found that continuous

visualization extents are more challenging than discrete visualization techniques. We believe that

our grouping of methods into add glyph, add geometry, modify geometry, modify attributes,

etc. is a powerful means to understanding the di�erent methods. There are also many new

techniques that are yet to be invented, but will likely fall into these categories.

In development of new techniques, it is important to evaluate them to determine if they are

more e�ective than existing techniques. We have worked on evaluation methodologies, and have

done a complete study of uncertainty glyphs. The new techniques that should survive are those

that are shown to be e�ective in encoding, and easily decoded by users. The basic methodology,

is to use visual tests where users examine visualizations, and decode the information within the

graphic. The amount of error between the user interpretation and the encoding is statistically

evaluated to determine if the visualizations are e�ective. There is a developed theory of speci-

�ers, by Carswell [Car92], Cleveland [Cle85, CM86], and others which has shown that decoding
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length is the most accurate, decoding area is less accurate, etc. Decoding of pseudo-colors, bump

mapping, surface textures, etc. has not been shown to be straightforward yet. The evaluation

of the e�ectiveness of new techniques is time consuming, but important, and we feel it is a wide

open area for fundamental research in visualization.

In this section, we have presented a variety of tables that give di�erent views of existing

visualization methods, and that contrast these with our new methods. The emphasis has been

to enumerate the state of the art as it exists, to clearly show what work needs to be done,

and to demarcate our contribution. The variety of uncertainty visualization techniques we have

illustrated in the images in this section show that there are more sophisticated methods than

side by side comparison techniques, or ignoring the uncertainty altogether. A very sophisticated

user may not need a visualization at all to understand a system under analysis, but visualization

is for exploration of systems that we do not fully understand, and characterizing the uncertainty

visually helps in more complete understanding.

Value Visualization Extent

discrete continuous

scalar glyphs fat surfaces, displacement,

(spheres, lines) a�ne transformations,

magnitude/frequency,

left/right, subliminal,

and multivariate methods below

multivariate glyphs (ellipsoids) material property, ribbons,

IFS, batons texture and bump mapping,

oscillate, ranking, batons

vector uncertainty glyphs snow angel

tensor

Table 5: New methods for uncertainty visualization and areas for further research

4 Conclusions

In this paper, a wide variety of new uncertainty visualization methods were introduced (adding

glyphs, adding geometry, modifying attributes, modifying geometry, animation, soni�cation,

and psycho-visual) and applied to many applications. The results of our research show there

is a tremendous variety of possible means to map uncertainty into a scene. The complexity

and hard work in deriving and understanding the uncertainty in the �rst place remains, but

hopefully we have demonstrated tools that may be helpful to more easily investigate uncertainty.

The approach of verity visualization where the technique for encoding the uncertainty is unam-

biguous, such as height glyphs for surface errors is not possible in all cases. The resultant data

overloading provides more of a burden on the end user, but the critical nature of using data

uncertainty while doing data analysis can be aided using our techniques.

We have done psycho-visual experiments for some of our approaches, and are working on

developing evaluations for our other techniques as well. The resulting visualizations of data and

uncertainty are integrated and present an accurate depiction to the user. We also found that

more than one uncertainty method can be used together, and that application speci�c methods

are relatively easy to generalize and be applied to di�erent applications. Working with di�erent

applications has allowed us to design uncertainty visualization methods that would not have

been otherwise apparent. As such, our current research e�orts include:

1. Comparative visualization of experimental and simulated data for validation purposes.
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2. 4D data assimilation and ensemble forecasting to resolve measurement and forecast di�er-

ences.

3. Extension of the uncertainty computation and visualization from structured grids to scat-

tered data sets, where the uncertainties are expected to be even more pronounced and

important in data interpretation.

4. Investigation of volume rendering methods for the purpose of designing comparative 3D

volume visualization methods. We plan to extend our work on 3D surface comparison

methods to 3D volume comparison methods and apply these to 3D volume rendered scenes

and images.

5. Development of techniques for comparing 2D images. The application domain of 2D images

is large (e.g. compression algorithms, GIS, cartography, etc.) and work in this area can

be of potential signi�cance.

We believe that these uncertainty visualization methods will prove valuable to people who need

to make informed decisions based on imperfect data.
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