
Mix&Match: A Construction Kit for Visualization

Alex Pang and Naim Alper

Baskin Center for

Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064 USA

Abstract

We present an environment in which users can in-

teractively create di�erent visualization methods. This

modular and extensible environment encapsulates most

of the existing visualization algorithms. Users can eas-

ily construct new visualization methods by combining

simple, �ne grain building blocks. These components

operate on a local subset of the data and generally ei-

ther look for target features or produce visual objects.

Intermediate compositions may also be used to build

more complex visualizations. This environment pro-

vides a foundation for building and exploring novel vi-

sualization methods.

Key Words and Phrases: interactive, extensible,

spray rendering, smart particles, visualization environ-

ment.

1 Introduction

The diverse needs of scientists demand the devel-

opment of general purpose,
exible and extensible vi-

sualization environments. Flexibility and extensibility

are particularly important since no monolithic pack-

age can be expected to satisfy every need. Users often

need variations on a particular technique and there are

always new techniques being developed. In this pa-

per, we present an environment for the
exible creation

of visualization techniques from basic building blocks.

Designing a technique involves identifying the tasks as-

sociated with target feature detection and behavioral

responses for displaying those features. This process is

simpli�ed by the categorization of these tasks into dif-

ferent classes and the formalization of what constitutes

a valid construction. A complete and valid construc-

tion de�nes a new visualization method. Each com-

ponent of a construction is usually very simple and

operates in a local subset of the data space. One of

these components speci�es which local subset of data

to process next. Hence, we can think of these construc-

tions as active processes that can be replicated and sent

to work on di�erent parts of the data. In fact, these

processes embody particle systems that interact with

the data they encounter. Other traditional algorithms

can also be decomposed and reconstructed with similar

components using this environment.

In the next section, we describe how our work dif-

fers from related work. We then describe the Spray

Rendering framework and howMix&Match enriches it.

This is followed by detailed description of the internals

of Mix&Match. Finally, we show a couple of construc-

tions and their e�ects.

2 Related Work

In the last few years the data
ow paradigm has

become popular in scienti�c visualization. Visualiza-

tion environments such as AVS [17], Iris Explorer [15],

Khoros [12], apE [3], and IBM Data Explorer [10] o�er

manymodules that perform �ltering, mapping and ren-

dering tasks that can be combined to achieve a desired

visualization goal. These systems o�er generality,
ex-

ibility, modularity and extensibility. They address the

needs of novice, intermediate and expert users. Novices

merely load and execute previously constructed net-

works. Intermediate users use a network editor to con-

struct such a network from existing modules while ex-

pert users extend the system by adding modules.

All of these systems can be classi�ed as large grain

data
ow systems. Data
ow refers to the production

and consumption of blocks of data as they
ow through

modules in a network. Modules are required to \�re"

as new data arrive. The granularity refers to the size

of the data block that the module processes. In these

systems, it is the same size as the data model (hence

large) rather than being an atomic element of the data

model [18]. Granularity may also refer to the size

and complexity of the modules. Once again, in these

systems they are large in the sense that they implement

complete algorithms (e.g. mapping or �lter modules).

A drawback with this approach is that memory re-

quirements become prohibitive and cause performance

degradation when the data set and the network are

large. Performance also su�ers when there is a lot of

interaction or when the data is dynamic and contin-

ually changing. Recently a �ne grain data
ow envi-

ronment has been proposed to overcome some of these

problems [16]. In this approach, the algorithms are re-

designed to work locally on incoming chunks of data

where the chunks are a few slices. However, visual-

ization algorithms that require random access to the

data set, such as streamlines for
ow visualization, are

di�cult to convert.

In spite of such shortcomings, these systems en-

joy a large following mostly because of their
exibil-

ity and extensibility to meet new user demands. The

importance of these qualities have been recognized in

other work. In ConMan, users constructed networks

for dynamically building and modifying graphics ap-

plications [5]. Abram and Whitted used an interactive

network based system for constructing shaders from

building blocks [1]. Kass used an interactive data
ow

programming environment to tackle many computer

graphics problems [7]. Corrie and Mackerras recently

extended the Renderman shading language to provide

a modular and extensible volume rendering system

based on programmable data shaders [2].

Our approach strives to maintain the extensibility

and enhance the
exibility and interactivity of modu-

lar visualization environments at the expense of some

e�ciency. Instead of modules grinding on entire data

sets that
ow through them, we send or assign light

weight processes to work on a small subset of the data.

Thus the two main di�erentiating points are the gran-

ularity of both the modules and size of working data

set, and the execution style. Although the visualiza-

tion of the whole of the data set would computationally

be more expensive with this approach, the �ne-grained

nature of our components which work locally on parts

of the data allow quick, interactive exploration. The

components are conceptually simple and can be net-

worked in a very
exible way to create more complex

components. Because of our choice of execution style,

large and dynamic data sets can be handled by local-

izing these visualization components only to regions of

interest.

3 Spray Rendering

In this section, we brie
y describe the Spray Ren-

dering [11] framework which we use for the construc-

tion and application of visualization methods using

Mix&Match. Spray Rendering uses the metaphor of

spray cans �lled with smart paint particles. These par-

ticles are sprayed or delivered into the data set to high-

light features of interest. Features can be displayed in

a variety of ways depending on how the paint particles

have been de�ned. To get di�erent visual e�ects, users

simply choose di�erent spray cans from a \shelf". The

regions that are displayed depend primarily on the po-

sition and the direction of the spray can. Cans also

have nozzles that can train the particles into a focused

beam or distribute them across a wider swath. The

number of paint particles and the distribution of these

particles can also be varied.

The key ingredient of Spray Rendering are the smart

particles or sparts. These sparts are reminiscent of the

Particle Systems introduced by Reeves [13] but also

possess some of the features of boids in [14] and [8].

Sparts are born and have a �nite life time. As they

travel through the data space, they interact with the

data, and perhaps among themselves, leaving behind

them visual e�ects for the users. These particle be-

haviors can be roughly classi�ed into two categories:

targets and visual behaviors. Targets are features in

the data set that the sparts are hunting for (e.g. iso-

values, gradients, combination of two �elds, etc.) while

behaviors specify how sparts manifest themselves visu-

ally or non-visually (e.g. leaving a polygon or an in-

visible marker behind, attaching color attributes, etc.).

Some of these e�ects can be seen in Figure 1.

Figure 1: Spray Rendering workspace show-

ing e�ects of di�erent types of smart particles

(sparts). Users control viewing and spraying

through either graphics window. The lower left

graphics window shows the view from the cur-

rent can.

While sparts are conveniently portrayed to live in

3D space and handle 3D data sets, they can also be

designed to operate in lower or higher dimensional

space. For example, to track data values from a

stationary sensor, one can imagine the spart as sitting

on the sensor and producing glyphs (e.g. polylines)

according to changes in sensor readings. Or a spart

can be called upon to handle time dependent
ow �elds

where the spart is required to travel through time.

Eventually, a spart may also map and travel through

any N-parameter space. However, we still need to

investigate this further since mapping parameter values

to Euclidean space will generally produce scattered

data sets. This also complicates the point location test

for a spart.

In earlier implementations of Spray Rendering [11],

we mentioned the idea of mixing di�erent targets and

behaviors together to form new sparts. However, we

only had prede�ned sparts in the sense that each spart

on the shelf was a complete spart and could not be

altered. It was evident that since these sparts shared

some common characteristics, they could be decom-

posed into simpler components and reorganized almost

arbitrarily. The next section discusses the issues and

implementation details of how this is done.

Note that the idea of visualization processes com-

posed of basic building blocks moving through data

does not require spray cans as a launching pad. Indeed,

we have a mode where the processes are executed at

each grid location.

4 Mix&Match

Here we analyze the structure and components of a

spart and how they can be categorized. We then dis-

cuss the construction rules for building new sparts out

of these components. We also address issues such as

macro facilities, multi-stage spawning, handling multi-

ple data sets simultaneously and e�ciency.

4.1 Building blocks of a spart

As can be seen in Figure 1 each spart type produces

a di�erent visual e�ect. Sparts can be programmed

to generate iso-surfaces; they can be asked to trace

through
ow �elds and leave vector glyphs, ribbons

or stream lines; or generate a quick-and-dirty volume

rendering e�ect by mapping the data values to colored

points or spheres. Thus, each spart can be regarded as

a di�erent visualization method.

The goal of this research is to provide users the capa-

bility to interactively create new visualization methods

(or sparts). We achieve this by providing a construc-

tion kit, made up of an extensible list of spart building

blocks, and allowing users to
exibly combine di�erent

pieces together.

As noted earlier, prede�ned sparts have two general

types of components: target detection and behavioral

expression. We can further re�ne this analysis by not-

ing that sparts are based on particle systems. They

therefore have rules regarding when they are born and

when they die. In addition, since these sparts are to

be sent into the data space, they also have position

update rules that may be di�erent from those found in

behavioral animation (collision avoidance, group cen-

tering, etc.). We have grouped these spart components

into four categories:

1. Targets. These are feature detection compo-

nents. They operate on the data locally and check

to see whether a boolean condition is satis�ed.

Components in this category may include local

pre-processing operations such as smoothing or

gradient operators but not global ones such as

Fourier transforms. Relational operators, such as

And/Or, are also implemented as target functions

and can be used to combine any functions that

output a boolean.

2. Behaviors. These are components that depend

on a boolean condition, usually a target being

satis�ed, and may produce abstract visualization

objects (AVOs) to be rendered.

3. Position update. These are components that up-

date the current position of a spart. For example,

position changes may depend on the initial spray

direction or may be dictated by a
ow �eld.

4. Birth/Death. These components decide whether

the spart should die or spawn new sparts. For

example, a spart may be terminated as soon as a

target is found or wait until it has exited the data

space.

Figure 2: Components browser showing the list

of functions categorized under targets, behav-

iors (visuals), position update and death func-

tions.

Figure 2 shows a growing list of components under

each category. Each element in the list is a building

block that can be used in the creation of a spart. By

breaking down the spart into components, we allow

the components to be used in the rapid prototyping of

other sparts.

Each building block in the construction kit is a

regular C function with variable number and type of

inputs and outputs. The input and output ports can

be connected together interactively. There is strong

type checking at the I/O connectivity but no type

coercion. Apart from the number and types of inputs

and outputs, components may also have parameters

that can be set by the user through widgets (e.g.

threshold value, step size, etc). A spart is therefore a

set of functions grouped together to carry out a speci�c

visualization method.

4.2 Putting them together

False

True

False

Birth

Death

Function

Update

Position

True

Death

Function
Behavior

Function

Target

Figure 3: Flow chart illustrating the life-time of

a typical spart.

The process of creating the spart corresponding to a

visualization method can be seen as the mixing of dif-

ferent pigments on a palette to obtain a desired color.

In this analogy, the building blocks are the pigments.

We call this process of mixing di�erent building blocks

to obtain a desired visual e�ect Mix&Match. The rules

for putting the building blocks together are quite sim-

ple. The basic pattern follows the typical operations

over the lifetime of a spart as illustrated in Figure 3.

Note that Figure 3 is merely illustrative. For instance,

there may be sparts that do not have a target function

and whose behavior function executes unconditionally,

or there may be death functions that depend on mul-

tiple conditions.

We provide both a textual and a graphical interface

to the process of composing a spart and users can

switch freely between the two. Spart construction

starts with the selection of components to be included

in the editor from the components browser (Figure 2).

As building blocks are included in the construction,

users must manipulate the input and output �elds

of each component to establish connections. In the

textual interface, this is done by editing the inputs and

outputs such that a name given to an output �eld of a

component and the input �eld of another component

indicates a connection between them. In the graphical

editor (Figure 4), one merely selects the input and

output names from the menus of the components in

question. We have avoided the use of a programming

language for the de�nition of a spart to make the task

simpler for the scientist.

Figure 4: The graphical spart editor showing

the iso-surface spart composition. The IsoSurf

component is shown expanded to reveal the

types and the status of connections. Circles

indicate connections of the �elds while colors

of the triangles represent the types of the �elds.

Before enumerating the rules for constructing a

spart, let us look at how a common visualization

method can be expressed in the form of a spart as it

would appear in the textual spart editor. The March-

ing Cubes algorithm [9] can be converted to a localized

spart construction using three building blocks as illus-

trated below. Instead of looking at every cell in the

volume, individual sparts handle a local subset of the

data. In this particular example, it would be those

cells that the spart visited as it travels through the

data space.

Iso-surface spart:

IsoThresh [S1] (Found) (Tag) (IsoVal)

IsoSurf [S1] [Found] [Tag] [IsoVal] (Obj)

RegStep [S1]

The above construction consists of a target function

IsoThresh, a behavior function IsoSurf, and a posi-

tion update function RegStep. The Streams compo-

nent (Figure 4) exists in all networks for binding data

streams to the input ports of the other components.

There is also a default death function that kills the

sparts once they exit the bounding box of the data set.

Input �elds are identi�ed with [] while output �elds

are identi�ed with (). IsoThresh is a simple function

that examines the cell the spart is in within the input

stream S1. It sets the boolean Found if there exists

a surface at the given iso-value. In this case, IsoSurf

will generate one or more polygon visualization objects

Obj in that cell. The spart then advances a �xed step

size according to the parameter set in RegStep. These

functions are repeated until the spart is terminated af-

ter exiting the bounding box of the data volume.

The power ofMix&Match becomes evident when the

user has the
exibility of modifying sparts to produce

di�erent e�ects. For example, in the construction

above, the death function could be made conditional

on an iso-surface being found. This slight modi�cation

will produce iso-surfaces that are visible only from the

spray can's perspective. The position update function

may be modi�ed to follow surface gradients. Likewise,

the behavior function may be substituted with one that

paints the entire cell achieving a cuberille e�ect[6].

For some sparts it may be undesirable to rely on

position update and death functions that sample the

data. In the example above, cells that are missed will

not produce polygons and may result in discontinuous

surfaces. For this reason, we provide a mode where

the spart visits all the cells and only the target and

behavior functions are executed.

There are a few simple rules for constructing sparts

which are enforced either during construction or during

parsing:

1. Strong typing. The types of the input and output

�elds of a connection must match. Type checking

is done at the time the connection is being es-

tablished in the graphical editor and is postponed

until parsing time in the textual editor.

2. No optional inputs. All function input �elds must

either be connected to an output �eld or have a

constant value associated with it. Output �elds

can be left
oating.

3. Fan out but no fan in. There can only be a single

connection into an input �eld. The same output

�eld can be connected to multiple input �elds

however.

4. Acyclic graph. A directed graph where the edges

denote the dependency between components has

to be acyclic.

5. Execution order. The components of a spart ex-

ecute according to a speci�c order: target func-

tions �rst, then behavior functions, position up-

date functions and �nally birth/death functions.

Topological sorting ensures correct dependency or-

dering within each category. However, a com-

ponent from a category that will execute earlier

should not depend on another component that will

execute later.

The environment also provides a macro facility to

build a component from a collection of other com-

ponents allowing more succinct compositions. The

macros can be nested and more than one macro can

appear in a composition. Note that macros are like

procedures and can be saved and used in compositions.

They are not merely a temporary visual grouping of

components.

4.3 Handling multi-parameter data sets

A spart can handle multi-parameter data sets. Each

parameter of a multiple parameter data set is treated

as a separate data stream. The spart composition

then contains separate components to handle di�erent

data streams individually. The stream identi�ers, e.g.

S1, saved with the spart composition are bound by

the user to the actual data streams at the time the

spart is loaded into a can. When two di�erent streams

appear as input in the composition, it may mean that

they are the two parameters of a data set with the

same bounding volume, or two di�erent data sets with

di�erent bounding volumes. The latter implies that

there may be multiple incarnations of the spart, one

in each stream. An incarnation in one stream may be

dead but another may still be alive and the spart will

continue executing its program until all incarnations

are dead. This allows us to look for relationships

between parameters of the same data set or between

parameters in di�erent data sets that have overlapping

bounding volumes.

Relational expressions used in combining di�erent

targets, whether from the same data stream or not,

are also implemented as target functions. For example,

if the target functions TargetA and TargetB have

boolean outputs A and B, they could be combined as

follows:

TargetA ... (A) ...

TargetB ... (B) ...

And [A] [B] (AandB)

4.4 Multi-stage spawning

Sparts are initially spawned as they are sprayed from

the cans. Each time the user sprays or holds the spray

button down, sparts are continually being spawned and

added to the can's pool of sparts to be executed. These

sparts are eventually executed and terminate when

they have satis�ed the death function.

New sparts may also be spawned during the life span

of a spart. This is achieved by including a spawn

function in the construction. The spawn function takes

the name of the spart to be spawned as an argument.

The new spart does not have to be the same as the

parent spart. The spawn function is handy in certain

situations. For instance, new sparts may be spawned

in the vicinity where iso-surface sparts have located a

surface. This will �ll in the surface more quickly than

relying on the spraying marksmanship of the user.

4.5 Extensibility

One advantage of Mix&Match over other systems is

the relative ease of writing small �ne-grained functions

that perform very speci�c tasks (e.g. update position

in certain way or produce certain AVOs). In compar-

ison, coarse-grained modules are typically larger and

also have some degree of code replication since some

modules may be very similar in certain tasks but di�er

on details.

Extending the functionality of the environment in-

volves adding more functions to the browser. New

functions must be registered so that they can be in-

cluded in the browser. A con�guration manager pro-

vides a graphical user interface for this task. The user

de�nes the number and types of the inputs and out-

puts and graphically designs the control widgets for

the component. The con�guration manager then gen-

erates appropriate wrapper code. The new component

is integrated into the system by compilation and link-

ing.

4.6 E�ciency and object compaction

There is a tradeo� between
exibility and e�ciency.

If components exist at a low level, there is greater
ex-

ibility in composition but one su�ers higher costs in

execution overhead. Inversely, a high level component

results in loss of
exibility. At the cost of code replica-

tion and program size, one can include both the high

level module and its components. At the extreme, one

could have the spart be a single module. We call these

prede�ned sparts. If a certain spart is to be used of-

ten it may be worth the e�ort to re-implement it as a

prede�ned spart.

The building blocks are written independently from

each other and hence have to determine at run time

where to �nd the inputs and the parameters they need

and where to send the outputs. This is handled by

the components looking for their inputs and parame-

ters from �xed places in their own structure. During

parsing, memory is allocated for the addresses of input

and output �elds of each component. These addresses

are �lled according to the connections in the compo-

sition. All that the function does when called is to

dereference the pointers from the component structure

passed to it. Multiple instances can thus coexist in a

composition.

The main reason for the cost in execution is not so

much the extra function calls and pointer dereferences

but the fact that those functions that produce AVOs

have to generate them at each call that satis�es the

target function. For instance, a prede�ned streamline

spart would accumulate vertices that de�ne a single

multi-segmented line object (polyline). A Mix&Match

streamline spart, on the other hand, would de�ne a

simple line segment consisting of the present and the

previous vertex each time it is called. This causes inef-

�ciency both in execution (many more calls to malloc)

and in storage (inner vertices are replicated). The ren-

dering time also su�ers because of the greater number

of AVOs generated that need to be traversed. To alle-

viate the latter problem, objects of similar attributes

are compacted periodically into a single object. In

the above example, all the simple line segment objects

would be compacted into a single polyline object.

5 Examples

In this section, we give some examples of spart com-

positions. By changing single lines of these composi-

tions, di�erent visualizations can be achieved. Users

can experiment with the di�erent compositions and

save those that they are likely to use again.

5.1 Flow visualization

Showing streamlines is a typical
ow visualization

method for displaying vector �elds (Figure 5). In this

technique, the path of a massless particle through the

ow �eld is traced assuming that the vector at the

current location is tangential to the path. The new

position is calculated by forward integration using the

vector at the current location. Such a spart can be

constructed as follows:

Streamline spart:

StreamLine [S1] [=TRUE] (Vec) (Obj)

VecForwInteg [S1] [Vec]

Figure 5: A spart that generates streamlines

from a vector �eld. Iso-surfaces from a scalar

�eld are also shown in the background.

This is a spart without a target function. The �rst

component is a behavior function that uncondition-

ally outputs objects while the position update func-

tion VecForwInteg calculates the new position. The

�rst component also outputs the calculated vector at

the current location so that it can be used by the fol-

lowing component. It is a good idea to pass interme-

diate values that may require expensive computation

so that other components can use them without re-

computation.

Another technique for vector �eld visualization is to

use vector glyphs. Usually, the glyphs are placed at

some sub-sampling of the grid but in spray rendering,

we can place them at intervals along the path of the

spart. By replacing the behavior function in the com-

position above with a behavior function that produces

vector glyphs, we can place glyphs at intervals along a

streamline. Alternatively, we can include both behav-

ior functions and obtain streamlines and glyphs along

the streamline.

5.2 Iso-surfaces

We can make some minor variations to the iso-

surface spart described in section 4.2. For example,

we can combine two or more iso-surface seeking sparts

within one construction. The target functions may be

bound to the same input stream (i.e. looking for di�er-

ent iso-values) or they may be bound to di�erent input

streams. The target function of the iso-surface spart

can be used in a spart that does not actually gener-

ate an iso-surface, but merely uses this component as

a �ltering operation. Another behavior that takes in

a geometry(the iso-surface) as input and colors it ac-

cording to a stream value can be used to investigate a

relationship between two parameters of a data set by

showing the variation of one parameter over a surface

on which the other parameter is constant as in [4]. The

following composition illustrates these ideas:

A spart with four streams:

IsoThresh [S1] (Fnd1) (Tag1) (Val1)

IsoSurf [S1] [Fnd1] [Tag1] [Val1] (Obj1)

AddColSurf [S2] [Fnd1] [Obj1] (Obj2)

IsoThresh [S3] (Fnd2) (Tag2) (Val2)

VecGlyph [S4] [Fnd2] (Vec)

RegStep [S1]

In this example, an iso-surface is created based

on one stream (S1:geopotential height) and the val-

ues of another stream (S2:humidity) are mapped onto

the generated surface as color. A third stream

(S3:temperature) is �ltered based on a threshold value

(S4:wind �eld) and vector glyphs are placed at those

locations that satisfy this condition.

Figure 6: A spart that shows the relationship

between four input streams of a climate model.

An iso-surface is generated from the geopoten-

tial height �eld and the relative humidity is

mapped onto this surface. The temperature

�eld is thresholded and wind vectors placed at

the locations that would have produced an iso-

surface.

6 Conclusions

Mix&Match is an extension to Spray Rendering

which allows composition of visualization techniques

from simple, �ne grain building blocks. Unlike the

prede�ned sparts presented in our earlier work, the

Mix&Match sparts are made up of elementary com-

ponents and users are allowed to edit them by adding,

removing or changing di�erent components with the

aid of a textual or graphical spart editor. This capa-

bility encourages the users to experiment with di�erent

ways of visualizing their data. In contrast to data
ow

networks, the execution model used here sends mul-

tiple independent agents to di�erent localities of the

data space. Its strengths are its extensibility and the

fact that users can create their own visualization meth-

ods interactively. On the other hand, its weaknesses

are primarily e�ciency and the duplication of e�ort by

multiple sparts that enter the same data space.

The current work opens up the proverbial Pandora's

box. There are many issues that need to be resolved

to fully exploit the capabilities of sparts. Among these

are the traversal through unstructured grids and scat-

tered data, mapping to parallel architectures, inter-

spart communication and letting sparts query scienti�c

databases. Whether our approach o�ers advantages in

massively parallel environments is something that we

will be investigating in the near term.

Acknowledgements

We would like to thank the other members of the

spray team: Je� Furman, Tom Goodman, Elijah

Saxon, and Craig Wittenbrink. We would also like

to thank Dr. Teddy Holt and Dr. Paul Hirschberg for

kindly providing us the meteorological data sets used

in the �gures. Support for this work is partly funded

by NSF grant CDA-9115268 and ONR grant N00014-

92-J-1807.

References

[1] Gregory D. Abram and Turner Whitted. Building

block shaders. Computer Graphics (ACM SIGGRAPH

Proceedings), 24(4):283 { 288, August 1990.

[2] Brian Corrie and Paul Mackerras. Data shaders. In

Proceedings: Visualization '93, pages 275 { 282. IEEE

Computer Society, 1993.

[3] D. S. Dyer. A data
ow toolkit for visualization. IEEE

Computer Graphics and Applications, 10(4):60 { 69,

1990.

[4] T. A. Foley and D. A. Lane. Multi-valued volumetric

visualization. In Proceedings: Visualization '91, pages

218 { 225. IEEE Computer Society, 1991.

[5] Paul E. Haeberli. ConMan: A visual programming

language for interactive graphics. Computer Graphics

(ACM Siggraph Proceedings), 22(4):103 { 111, 1988.

[6] G. T. Herman and H. K. Liu. Three-dimensional

display of human organs from computer tomograms.

Computer Graphics and Image Processing, 9(1):1 { 21,

1979.

[7] Michael Kass. CONDOR: Constraint-based data
ow.

Computer Graphics (ACM SIGGRAPH Proceedings),

26(2):321{330, July 1992.

[8] G. David Kerlick. Moving iconic objects in scienti�c

visualization. In Proceedings: Visualization '90, pages

124 { 130. IEEE Computer Society, 1990.

[9] W. E. Lorensen and H. E. Cline. Marching cubes:

A high resolution 3D surface construction algorithm.

Computer Graphics, 21(4):163 { 169, 1987.

[10] B. Lucas, G. Abram, N. Collins, D. Epstein, D. Gresh,

and K. McAuli�e. An architecture for a scienti�c

visualization system. InProceedings: Visualization'92,

pages 107 { 114. IEEE Computer Society, 1992.

[11] Alex Pang and Kyle Smith. Spray rendering: Visual-

ization using smart particles. In Proceedings: Visual-

ization '93, pages 283 { 290. IEEE Computer Society,

1993.

[12] J. Rasure, D. Argiro, T. Sauer, and C.Williams. Visual

language and software development environment for

image processing. International Journal of Imaging

Systems and Technology, 2(3):183 { 199, 1990.

[13] W. T. Reeves. Particle systems: A technique for

modeling a class of fuzzy objects. Computer Graphics,

17(3):359 { 376, 1983.

[14] C. W. Reynolds. Flocks, herds and schools: A

distributed behavioral model. Computer Graphics,

21(4):25 { 34, 1987.

[15] G. Sloane. IRIS Explorer Module Writer's Guide.

Silicon Graphics, Inc, Mountain View, 1992. Document

Number 007-1369-010.

[16] Deyang Song and Eric Golin. Fine-grain visualization

algorithms in data
ow environments. In Proceedings:

Visualization '93, pages 126 { 133. IEEE Computer

Society, 1993.

[17] C. Upson. The application visualization system: A

computational environment for scienti�c visualization.

IEEE Computer Graphics and Applications, 9(4):30 {

42, 1989.

[18] C.Williams, J.Rasure, and C. Hansen. The state of the

art of visual languages for visualization. In Proceedings:

Visualization '92, pages 202 { 209. IEEE Computer

Society, 1992.

