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This paper presents techniques for interactively visualizing ten-
sor fields using deformations. The conceptual idea behind this ap-
proach is to allow the tensor field to manifest its influence on ide-
alized objects placed within the tensor field. This is similar, though
not exactly the same, to surfaces deforming under load in order to
relieve built up stress and strain. We illustrate the effectiveness of
the Deviator-Isotropic tensor decomposition in deformation visu-
alizations of CFD strain rate. We also investigate how directional
flow techniques can be extended to distinguish between regions of
tensile versus compressive forces.
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1 INTRODUCTION

In 1994, Rosenblum [28] hosted a number of papers focusing on
“Research issues in scientific visualization”. Among the key re-
ports that we found particularly challenging and interesting to our
own research and expertise are those by [19] on vector and tensor
field visualization. Research on methods for visualizing 2

nd-order
tensor fields is actively being carried out by a very small group of
people: Hesselink [7, 8, 18, 21] in the US, Post [19] and van Wijk
[6] in the Netherlands, and Hagen [4, 14] in Germany. Yet scientists
and engineers have to deal with these type of data sets almost on a
daily basis.

This research presents intuitive, deformation-based tensor field
visualization techniques to complement the limited set of current
techniques. Deformation is an intuitive and effective method that
has been used extensively to illustrate effects of tensile and com-
pressive forces in mechanics textbooks [2]; can be observed directly
in nature in the form of geological formations [23]; and alters the
molecular alignment of liquid crystals and thus their light scatter-
ing capability in order to measure shear stress in compressible flow
measurements [27]. Thus, the general idea behind our approach
is to embed idealized object(s) (e.g. points, lines, planes, sub-
volumes) within a tensor field and allow the field to act upon the ob-
ject(s). The result we hope to achieve are deformations (e.g. move-
ments, bending, twisting, compression, elongation, etc.) imposed
upon these idealized object(s) by the tensor field. This research in-
vestigates visualization methods arising from subjecting idealized
objects (surfaces or volumes) to the state information within tensor
fields in order to gain an insight into the tensor field. This approach
uses fast local computations and yet provides users with a view of
the field along extended objects.

We focus on 3-dimensional, 2nd-order tensor fields. This does
not unnecessarily limit the applicability of this work since 2

nd-
order tensor fields (hence referred to as tensor fields) appear in a
variety of scientific and engineering applications. Our approach
is to develop and evaluate deformation based tensor visualization
methods using the Boussinesq problem and other known data sets
such as those used in [7, 8]. This is an important and necessary step
for validating the correctness of our visualization on a known ten-
sor field, and also useful for comparison with other published ten-

sor visualization methods. We then apply these deformation based
techniques to data sets from computational fluid dynamics.

2 PREVIOUS WORK

Tensor fields can be found in numerous physics and engineering
applications such as fluid flows [8], mechanics and material science
[20], and tectonics [32]. In spite of their prevalence, tools to visual-
ize and understand these data sets are quite limited. In this section,
we review the current set of alternatives for visualizing tensor fields.

Pseudo-coloring
This method maps scalar values to color and is used in conjunc-

tion with orthogonal planar slices through the volume. Since 3 di-
mensional 2nd-order tensor fields have 9 scalars at each point, 9
pseudo-colored slices are usually presented in a 3 x 3 panel layout,
one for each of the 9 scalar components. The main drawback with
this approach is the burden placed on the user to mentally integrate
and interpret the 9 separate maps.

Tensor glyphs
This method relies on judicious design and placement of discrete

tensor glyphs [12, 6, 26, 24]. Tensor glyphs encode tensor informa-
tion from discrete locations within the field onto a geometric object.
For example, mapping the three eigenvectors as principal axes of an
ellipsoid, or including additional derived information such as shear,
convergence/divergence, curvature onto a flow probe. Two other
techniques that fall under this category are stream polygons [29, 30]
and the deformed cube [22]. Both techniques deposit glyphs along
a streamline generated from a regular flow field. Stream polygons
distorts a polygonal shape according to the local properties derived
from a point in a flow field. Similarly, the deformed cube displays
a Frenet coordinate frame to show local relative stretch, shear, and
rigid body rotation at a point. While glyphs allow the possibility of
displaying all the tensor information at a particular point, their prin-
cipal drawbacks are the loss of continuity from the discrete nature
and placement of glyphs, and the potential clutter and overlapping
of the glyphs.

Tensor field lines and Hyperstreamlines
Tensor field lines [9] and hyperstreamlines [8] are extensions of

vector streamlines into tensor fields. For symmetric tensor fields,
the three orthogonal eigenvector components are sorted into largest,
median, and smallest eigenvalues. Tensor field lines and hyper-
streamlines are then generated by integrating along one of these
eigenvector fields. General hyperstreamlines allow the two other
eigenvectors and their corresponding eigenvalues to modulate an el-
lipse along the principal hyperstreamline. For non-symmetric ten-
sor fields, where the three eigenvector components are not neces-
sarily orthogonal to each other, the tensor field is first decomposed
into a symmetric tensor field and an accompanying axial vector.
Ribbons along the hyperstreamlines are then added to show the ro-
tational effects of the axial vector. Because one of the eigenvector
fields is used for integrating the hyperstreamline, there are two other



possible hyperstreamlines that can result from a single seed point.
The understanding of the tensor field must therefore be done sep-
arately for each eigenvector component, and again the user is left
with the burden of integrating and interpreting these three different
views.

Topological approach

This approach [18, 21] aims to provide a global structural rep-
resentation of the tensor field by first identifying degenerate points
(trisectors and wedge points) and connecting them with topologi-
cal skeletons (hyperstreamlines). The result of this approach is a
parsimonious display of the important features in the tensor field at
the same time showing the continuity (and discontinuities) in the
field. Topological tensor field visualization is a direct extension
from topological vector field visualization [11, 17, 1]. While this
class of methods draws the user’s attention to the salient features
in the field, the user still has to mentally reconstruct the rest of the
field around these degenerate and critical points and skeletons.

Focal surfaces and characteristic curves

Hagen [14] proposes the use of generalized focal surfaces [13]
to visualize information derived from real, symmetric deformation
tensor fields (e.g. maximum or minimum deformation) on a surface.
Directional information is displayed separately by elliptical glyphs
placed over characteristic curves. Non-symmetric tensor fields are
not supported.

Geodesics

This approach to visualizing symmetric tensor fields is to “con-
struct the geodesics in the Riemannian space determined by the ten-
sor so that the induced curvature can be realized” [10]. Essentially,
this method relies on the construction of geodesic surfaces to show
the effect of the tensor field as a distortion of flat space. Unfortu-
nately, this method does not easily extend to non-symmetric tensor
fields. Furthermore, it is heavily dependent on the efficiency of the
numerical methods employed to calculate the geodesics.

3 TENSOR PRIMER

Depending upon the properties being emphasized, a tensor is de-
fined equivalently as an object which obeys a specific transforma-
tion rule under a change of coordinate system or as multi-linear
map between vector spaces. In our research the second definition is
more natural. A 2

nd-order tensor quantity is defined to be a bilinear
map [5] !

N

� such that:
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�) � (a;b) = (! � a)(� � b) = 1 (1)

Here ! and � are co-vectors, that is, linear maps (dot products) on
the vectors a and b such that ! � a = 1 and � � b = 1.

In more familiar matrix notation for a 3-dimensional space,
Equation 1 allows us to write the expression:
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Thus, a 2nd-order tensor takes the form of a square matrix and asso-
ciates state with two directions in space. Provided we have a tensor
T = !

N

� and the vectors a and b we can compute the orginal
co-vectors:
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Indeed, the inner product of T and any linear combination of
a and b produces the appropriate linear combination of ! and �.
Thus the tensor is a specific map between the vector space spanned
by a and b and the vector space spanned by ! and �.

For example, the stress tensor at a point is a set of components
containing stress state information for any arbitrarily oriented plane
passing through a point. Multiplication of a unit vector represent-
ing a plane normal by the stress tensor gives one of the two stress
vectors (also known as a traction vectors) representing the stress on
that plane (Multiplication by the negative normal would yield the
second stress vector acting on this plane):
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In this case, we are mapping between the set of 3D plane normals
and the set of 3D stress vectors acting on those planes.

Tensors in Fluid Flows

In the study of fluid flows one of the most commonly encoun-
tered 2

nd-order tensor quantities is the velocity gradient. Indeed,
many other useful tensors are derived directly from the velocity gra-
dient, including the rate of strain, viscous stress, stress, reversible
momentum flux density, and moment flux density tensor. Hes-
selink [8] provides a table of these common tensors and their cal-
culation. The velocity gradient is given from the first order Taylor’s
series expansion of the velocity at a point:
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Tensor Decomposition

General 2nd-order tensors contain nine independent scalar quan-
tities. It is desirable to reduce this dimensionality in a mean-
ingful way as an aid in understanding the physical state repre-
sented by a tensor. Common decompositions include Symmetric-
Antisymmetric and Polar Decompositions. A third decomposi-
tion into Isotropic and Deviator tensors is used to remove a back-
ground isotropic contribution which may tend to overwhelm and
hide meaningful features found in the Deviator. In our research we
have only exploited the Symmetric-Antisymmetric and Deviator-
Isotropic Decompositions. They are described in more detail below.

Symmetric-Antisymmetric Decomposition

Any 2

nd-order tensor may be decomposed into the sum of a sym-
metric tensor and an antisymmetric tensor. That is:
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1

2

(T+T

t

) +

1

2

(T�T

t

) (9)

Applying this decomposition to the velocity gradient in Equa-
tion 8 yields:
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The first order Taylor’s series expansion of velocity in Equation
6 becomes:

V = V

0

+ S � �r+A � �r (11)

This corresponds to the decomposition of the velocity into local
translation (V

0

) plus local rate of strain (S � �r) plus local rigid
body rotation (A � �r). Since antisymmetric portion (A) is anti-
symmetric about the diagonal and the diagonal components are 0,
it has only 3 independent components, 3 in either the upper triangu-
lar matrix or lower triangular matrix. This corresponds to a rotation
vector that can be visualized as hedgehogs or ribbons [8] imposed
on visualizations of the symmetric tensor. The symmetric part (S)
has 6 independent components, 3 in either the upper or lower trian-
gular matrix plus 3 components on the diagonal. This multivariate
data is more difficult to visualize.

Isotropic-Deviator Decomposition

A 2

nd-order tensor can be decomposed into a Deviator and
Isotropic tensor:

T = D+U: (12)
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where D is the Deviator and U is the Isotropic tensor.

In the case of the velocity gradient tensor q is equal to r � V,
which is the velocity divergence. Thus, for the velocity gradient
tensor, the Deviator corresponds to removing 1

3

of the velocity di-
vergence from each of the diagonal elements. The Isotropic portion
can be considered a background that is uniform in every direction,
but can dominate over the Deviator [21]. Visualization of the Devi-
ator removes this background and focuses attention on the structure
that varies with direction.

Deviator-Isotropic Decomposition can be applied to tensors in
general, or to the symmetric part of a Symmetric-Antisymmetric
Decomposition. The Deviator has no meaning in the context of the
Antisymmetric portion of a tensor since the diagonal elements are
null. We utilize the Deviator frequently in our visualizations of the
symmetric strain rate tensor.

4 APPROACH

For this research, we focus on symmetric stress tensors from a sin-
gle point load Boussinesq problem and symmetric strain rate and
the Deviator of the symmetric strain rate tensors extracted from
CFD data.

Directional Principles

Based on the bilinear mapping of Equation 2, the inner product
of a 2

nd-order tensor with an arbitrary unit direction vector yields
a new resolute1 vector:

v = T � n̂ (14)

The form of a 2nd-order tensor is a matrix with order 2 and dimen-
sionality equal to the dimension of our space. For 3 dimensions,
our inner product becomes:
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As an example, a stress tensor contains information about the state
of stress at a point. The inner product of the stress tensor with a
surface normal produces a vector quantity representing the stress
on that surface. We can choose any surface normal and thus find
the stress on arbitrary surfaces passing through the point. Note that
the stress vector for a given surface may have components that are
both shear and normal to the surface. The normal component of
stress may be compressive (pushing on to the surface) or tensile
(pulling at the surface). In the usual sign convention, if the normal
component of stress lies in the half sphere of the surface normal,
then it is tensile, otherwise compressive. If the stress vector has
no shear component on the surface, then the surface is referred to
as shear free. If no normal component exists, then the surface is a
plane of maximum shear.

Other 2nd-order tensor quantities have analogues to the surface
normal and the shear/normal components of stress. The vector used
in the inner product with a tensor may not represent a surface, but
some other directional quantity, such as direction of a magnetic
field. Likewise, the analogues to shear and normal stress will vary.
For instance plasma flow across magnetic field lines (cross flow) or
in the direction of magnetic field lines.

Deviator

We discussed how the Deviator of a tensor removes a sometimes
dominant isotropic component from the original tensor. Taking the
inner product of the Deviator with a direction vector:
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shows that the inner product with the Deviator consists of the orig-
inal tensor inner product minus a constant multiple of the selected
direction. The isotropic component present in products with the
original tensor is undesirable since it can obscure detail present in

1Resolute is borrowed from the vector analysis term representing the

scalar product of a vector and a unit normal: a � n̂



the non-isotropic components. The Deviator is useful in our visu-
alizations since it eliminates this constant multiple of the selected
direction and emphasizes the structural detail in the field.

Visualization
To visualize the tensor field we place a geometric object, such as

a plane, as an interrogation object [15] in the field. We use trilinear
interpolation at discrete points on the surface to obtain tensors at
each point. We then form the inner product of the tensors and a user
selected vector or vector field (such as the normal to the surface).
The derived resolute vector field is then used to visualize the tensor
field on the surface.

Our first technique uses the resolute vectors to deform the surface
or volume. In this technique, we displace points defining our object
by an amount proportional to the resolute vector at that point.

For a point in the original interrogation object I(x) the new point
in the deformed object O(x) is given by:

O(x) = I(x) + s[T(x) � n̂(x)] (17)

Position in the field is given by x, s is a scale factor, n̂(x) is the
user selected vector field, and T(x) are the tensors at each x. The
term T(x) � n̂(x) is the resolute vector at x.

The result is an object that is deformed proportional to the res-
olute vector. For instance, in a stress tensor field, a planar surface
with the surface normals chosen for n̂(x) will force the surface
to bulge outward or inward depending upon the magnitude of the
normal component of the stress and whether it is compressive or
tensile. Note that while such a surface deforms in response to the
tensor acting upon it, the resulting deformed surface that we cur-
rently obtain in this fashion is not necessarily shear free. Shear
stresses will result in expansion or compression of the grid lines
forming the surface. If the surface has normal displacement compo-
nents, this can be seen in the surface image. However, if no normal
component exists, viewing a wire-frame of the surface reveals the
presence of the shear component (see third image in Figure 1).

In our second technique, we replace the usual surface normals on
our surface with the derived resolute vectors. We then visualize the
resolute vector field on the surface using directional flow visualiza-
tion [25, 3] 2. The resulting visualization highlights areas where the
resolute vectors are closely aligned with the visualization light. By
changing the direction of the light or surface normal we can quickly
identify regions where the resolute vector is shear or normal to the
surface (see Color Plate 3). We can also identify compressive ver-
sus tensile regions (regions where the derived resolute vector points
outward or inward on the surface). One advantage of the directional
flow visualization technique is that the lighting model is very sen-
sitive to the direction of the resolute vectors, even if the resolute
vectors are of low magnitude.

If we are applying the deformation technique to surfaces, it is
useful to select between deformation by (a) the resolute vector (b)
or components of the resolute normal, and (c) components of the
resolute shear to the interrogation object surface. If we select the
entire resolute our deformation is given by Equation 17. If we de-
sire to visualize the normal component of the resolute vector and

2Directional Flow Visualization maps the angular deviation of a vector

field from a selected light vector to hue or value in an HSV pseudo-color

map. Typically, a direction-to-hue map is utilized with red hues indicating

that the vector field in a region is aligned with the light direction, and blue-

magenta hues indicate a vector field perpendicular to the light direction.

The mapping and illumination controls allow the user to select a direction

or range of directions of interest. For instance, it is possible to illuminate

all vectors perpendicular to the light, or all vectors aligned within a small

angular cone of the light direction. The technique is highly sensitive to

directional variation in a field and can be used to distinguish shear, normal,

anti-normal, and in between states of the vector field directions relative to

the light.

r(x) = T(x) � n̂(x) is the resolute vector, the equation of defor-
mation becomes:

O(x) = I(x) + s[r(x) � n̂(x)]n̂(x) (18)

which is deformation by the projection of r(x) onto n̂(x) in the
direction of n̂(x). Selecting deformation by the shear component
gives:

O(x) = I(x) + s[r(x)� [r(x) � n̂(x)]n̂(x)] (19)

With either the deformation or lighting technique, the surface se-
lection can be translated and rotated within the tensor field. As the
surface is moved it will deform or change its shading in response
to the tensors present in its new orientation. As with other anima-
tion techniques the sense of movement and changing deformation
is important in understanding the structure of the tensor field as a
whole.

5 IMPLEMENTATION

To investigate a 3D tensor field, the user is provided with a tool
to select an arbitrary plane or sub-volume from the 3D tensor vol-
ume. The selection tool also allows planes of specified thickness
and sub-ranges i.e. sub-volumes of the data set. We then use two
different methods to visualize the tensor information from the data
subset: surface deformation and extensions to directional flow vi-
sualization.

The user may select either (a) the surface normals on the plane or
surface of the sub-volume, or (b) a rotatable arrow in space which
defines a unidirectional vector field to be used in the inner product
with the tensor field. Additional controls are provided to control
scaling and clamping of object deformations.

For directional visualization lighting, a second arrow is provided
to control lighting direction and a control panel is provided to adjust
mapping, focus, and magnitude ranges,

The code implementation is with Java, visualization is done with
VTK [30, 31], and tested platforms are on Sun and SGI worksta-
tions.

6 RESULTS

Figures 1 to 3 and Color Plates 1 through 5 show visualizations
produced with our techniques on a well understood analytical data
set and more complicated “real world” data sets generated from
CFD simulations.

Validation Tests

Figures 1 to 3 and Color Plate 1 show verification tests performed
using a single point load Boussinesq problem data set. This prob-
lem is well understood and used by many tensor visualization re-
searchers to illustrate their techniques.

In Figure 1 we show a volumetric data set generated from a sin-
gle point load Boussinesq problem. The arrow is the direction of
applied force. The original geometry is a planar slice perpendicu-
lar to the z-axis with positive surface normal in the sense that it is
pointing out of the visible face. The surface normal is the selected
vector direction whose inner product is taken with the tensors at
each point. Resultant stress is used to deform the left image. Middle
and right images are deformed by the normal and shear components
of the resultant stress respectively. The downward deformation (de-
pressions) seen in images of the resolute and normal component
indicate compressive forces (deformation opposite the direction of
the normal). Visualization of the shear component in the wireframe
image (right most image) shows that shear on this plane is strongest



Resultant stress. Normal stress component. Shear stress component.

Figure 1: Single point load Boussinesq problem - surface deformation of a z-axis slice

toward the center of the plane and decreases as we move to the outer
edges of the plane.

Figure 2 illustrates the improvement in resolving the non-
isotropic details by using the Deviator tensor. Figure 2 shows the
same tensor field as in Figure 1, but now resolved on a plane per-
pendicular to the x-axis. The plane normal is along the positive
x-axis pointing to the right in the images. The view is from the top
looking down along the z-axis. At the top of the plane, we have two
“fans” of displacement. The one to the right is at the very top and
represents a tensile stress in the direction of the surface normal. The
“fan” on the left is just below the first and represents a compressive
stress. In the left image we show the stress with both isotropic and
deviator components present. The right image is produced after re-
moval of the isotropic tensor leaving only the deviator of the stress
tensor. The compressive fan (pointing to the left) is clearly smaller
in the right image with the isotropic component removed. This in-
dicates an isotropic component that is negative. Close observation
of the right image reveals a slight curvature of the planar slice above
and below the “fans” in the direction of the surface normal repre-
senting tensile stress. In the left image where a negative isotropic
component exists in this region, the curvature is reduced.

In Figure 3 and Color Plate 1 we compare our deformation tech-
nique with hyperstreamlines. The hyperstreamlines are integrated
through the minor eigenvector field and show the propagation of the
most compressive forces. Two planar z-axis slices at different posi-
tions are deformed in the field using the positive surface normal as
the direction vector field. Hyperstreamlines clearly show the direc-
tion of greatest compression and, through pseudo-coloring by the
eigenvalue, the magnitude of the compressive forces. Deformed
planes give a stronger visual clue about the relative magnitude of
forces. Additionally, they cover a large region of the field and hence
provide more direct information over a greater portion of the field.

Delta Wing

Color Plates 2 and 3 visualize the strain rate deviator tensor field
on a grid slice extracted from the computational grid perpendic-
ular to and just behind a delta wing at a 40 degree angle of at-
tack (http://science.nas.nasa.gov/Software/DataSets). Since
the delta wing is symmetric about its central axis, the computa-
tional data sets (and consequently visualizations from the data set)
contain only the left half of the wing geometry shown by portions
of the magenta triangle in each of the images. Our images show a
portion of the computation grid (greenish rectangular shape abut-
ting the magenta wing) behind the actual delta wing. This portion
of the grid is in the same plane as the delta wing surface and is an
artifact generated from the extraction of delta wing geometry from
the computational grid.

Figure 3: Single point load Boussinesq problem - Two z-axis slices
and minor hyperstreamlines

Color Plate 2 provides various viewing angles of the normal
component of the strain rate Deviator on the flow field slice behind
the delta wing. The slice is pseudo-colored by velocity magnitude.
A vortex that forms above and extends behind the wing surface is
indicated by the magenta pseudo-colored region on the deformed
grid slice in the images. To produce the deformation, a negative
surface normal pointing opposite the visible face in the left most
image is used as the direction vector field. As such, depressions in
the left most image represent tensile strain and extrusions toward
the viewer represent compressive strain.

A frontal view is presented in the left image with the tip of the
delta wing (partial magenta triangle) off the lower right corner of
the frame. The middle image is viewed from above looking down
onto the plane of the delta wing with the tip of the delta wing off the
bottom of the frame. Finally, the right image is posterior with the
tip of the delta wing off the upper right hand corner of the image. At
the base of the slice near the delta wing surface we observe region of
tensile strain whose extent can be seen in the posterior view and the
top view. A compressive region is indicated by the extrusion seen
on the right hand side of the slice in the left and middle images. A
tensile strain region is seen near the left side and base of the wing
where there is separation of the flow from the wing as it begins to
form a vortex. In the vortex core (blue region with magenta center)
we note a tensile strain. To the right and below the vortex core is a
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Figure 2: Single point load Boussinesq problem - Deviator/Isotropic comparison on x-axis slice

compressive region.

Color Plate 3 illustrates directional visualization of the strain rate
Deviator. The yellow arrow indicates the light vector and is nor-
mal to the grid slice surface. The vector field being illuminated
is computed from the inner product of the strain rate Deviator and
the surface normal. A direction-to-hue color map is employed with
red hues indicating resolute vectors closely aligned with the light
direction and blue-magenta hues indicating directions with a large
angular separation from the light. The left and middle images use
a focus of 0-90 degrees so magenta hues indicate a resolute vectors
perpendicular to the light and thus primarily shear strain. Dark re-
gions indicate resolute vectors with an angular separation greater
than 90 degrees from the light.

Negative surface normals pointing opposite the visible face are
selected for the direction field in the middle and right images. Thus,
lit regions possess a compression component with red indicating
most compressive and least shear, while magenta regions exhibit
mainly shear. Note that no hint of the relative magnitude of the
resolute vectors is given, only the directional quality.

The left image uses a positive surface normal (toward the viewer
from the visible face) as the direction field. In this case tensile,
rather than compressive, strain is visible as orange and red hues,
while shear strain appears in blue-magenta hues. Again, as in the
middle image, dark areas indicate resultant strain that at greater
than 90 degrees from the light, in this case indicating at least some
compressive component.

Finally, the right image attempts to combine visualization of both
compressive, tensile, and shear components in the same directional
visualization image. Here, a negative surface normal (pointing op-
posite the visible face) is selected as a direction vector field. A focus
of 0-180 degrees in chosen so that resolute vectors in the direction
of the light, and hence compressive, are pseudo-colored red, while
resolute vectors opposite the light, and hence tensile, are pseudo-
colored magenta. Green and cyan hues represent vectors perpen-
dicular to the light and are visible in regions that posses primarily
shear strain.

Features visible in these images include a tensile strain region
near center of the slice associated with eye of a vortex. Shear strain
is visible surrounding the vortex eye, at the base of the slice where
it touches the same plane as the wing, and along a band on the left
of the slice where the flow is lifting and beginning to spiral toward
the vortex. Large tensile and compressive regions are also clearly
visible.

Hemispherical Cylinder

Color Plates 4 and 5 illustrate our deformation technique applied
to a hemispherical cylinder at 40 degree angle of attack CFD data

set. The surfaces are HSV pseudo-colored by velocity magnitude.

Color Plate 4 illustrates deformation by the resolute of the strain
rate deviator on the hemispherical cap at the top of the cylinder.
The free stream flow is striking the cylinder from the top in these
images. Undeformed geometry is shown in the left image while the
right image is deformed using outward pointing surface normals as
the direction vector field. Though it may appear that the majority
of the deformation is normal to the original surface, it is in fact al-
most entirely shear. The “expanded” appearance of the cap is due to
a steadily increasing shear component from the head of cap to the
cylinder body. The ability to rapidly select between shear, normal,
and resolute strain in the visualizations tools reveal this detail. The
hole at the tip of the of the cap is excluded geometry due to difficul-
ties in calculating the tensor gradient in this region, but it provides
a reference point to compare between the two images. Notice that
the shape of the excluded geometry deforms from circular to oval
indicating a shear in this region. An interesting feature originates
from the small magenta colored region (with the shape of a tiny
downward pointing spike) just below the circular area of excluded
geometry. Carefully comparing the two images reveals that this re-
gion has been strongly deformed left, right and downward giving
the appearance of the “lip”.

Color Plate 5 illustrates visualization of a grid slice perpendic-
ular to the body of the hemispherical cylinder. Here the cylinder
has been rolled around its axis by 180 degrees from the images in
Color Plate 4, in this case the free stream flow strikes the bottom
of the cylinder. The surface normals point to the right in each im-
age and are used as the direction vector field for the deformations
The left image is deformed by the normal component of the strain
rate tensor, while the middle image shows deformation by the nor-
mal component of the strain rate deviator. The right most image
shows directional visualization of the resolute on the undeformed
slice with a focus of 0-180 degrees. Several compressive (to the
left) and tensile (to the right) spikes can be seen below the cylin-
der. Careful comparison of the deformation images show a number
of subtle differences. Below the cylinder there is a strong negative
isotropic component which depresses the geometry to the left giv-
ing a smoother appearance than the deviator alone. This is an ex-
ample where the isotropic component overwhelms details present
in the deviator. On the side of the cylinder body tensile compres-
sion results in a cuff that reaches its maximal extent at the cylinder
midpoint. The extents and shapes of these cuffs are dominated by
isotropic elements in the the left image but not in the middle image.

Directional visualization in the right image reveals concentric
rings of alternating shear, compressive, and and tensile regions.
Because the light and normal point to the right of the image, red
hues match regions of tensile strain, magenta indicates compres-



sive strain, and green/cyan indicate largely shear strain. Near the
cylinder body we observe mostly shear strain indicated by the cyan
pseudo-color. Moving outward from the cylinder body we observe
a ring of shear strain, followed by a compressive ring, followed by
a tensile ring and finally a transition back to compressive strain.

Issues

By themselves, 2D still images produced by this technique are
not as useful as visualizations produced in the interactive environ-
ment. Deformed surface structures are most often complex for real
world data and it is necessary to rely upon animation and rotation
to form a mental picture of the structure. It is useful to interactively
change the scale of deformation and displace the initial geometry to
observe tensor field changes through the field. The use of interac-
tive directional lighting helps identify small changes in the direction
of the resolute field. Additionally, care must be taken when the ini-
tial geometry is non-planar. It is often necessary to select between
shear and normal deformation since a deformation may at first ap-
pear to be normal to a surface when in reality it may be almost
entirely shear as discussed in reference to Color Plate 4.

Another problem is the frequent generation of non-manifold
(self-intersecting) geometry from deformations. This is particu-
larly true in the presence of strong shear components. Methods
we have used for dealing with this problem include interactively
adjusting the deformation scale, logarithmic scaling or clamping
of the deformation, and adjusting the geometry to separate visu-
alization of regions with strong self-intersecting deformation from
regions of smaller deformation. We also rely upon directional light-
ing rather than deformation in some cases. Other possible tech-
niques would include limiting the deformation to some fraction of
the actual grid size of the initial geometry or attempt some form of
non-manifold geometry detection. The drawbacks are that the de-
formations would become small for finely structured geometry and
non-manifold geometry detection would degrade interactivity.

7 FUTURE WORK

In our current implementation we have focused on deforming pla-
nar surfaces, either cutting planes or planar extractions of the data
grid. These test geometries are limited but the techniques could eas-
ily be extended to operate on isosurfaces of scalar values (such as
the locus of eigenvalues which meet various conditions), spherical
or cylindrical shapes, or complex geometries modeled with implicit
functions. Any surface or volumetric geometry that is suitable for a
particular problem could be utilized.

Both the deformation and directional visualization technique
have the advantage of not being limited to symmetric tensors as
many tensor visualization techniques are. By re-orienting the sur-
face selection in the field, or changing the order of the inner prod-
uct, antisymmetric tensors of the field can be observed. For in-
stance, by rapidly flipping a planar surface so that the surface nor-
mal is negated, it should be possible to observe antisymmetry in the
tensors, particularly if there is a pattern of antisymmetry (rotation)
in the whole field. More work needs to be done in this area to de-
termine if antisymmetry is clearly visible using this technique, as
well as investigating other techniques, such as 4D lights [16], for
this purpose.

We have not investigated visualization using the Polar Decom-
position. We believe that in the physical situations where the Polar
Decomposition is permitted (the determinate of the original ten-
sor must be 0), the Polar Decomposition will provide further clues
about the behavior of the field. In the Polar Decomposition, the
stretch component maintains more amplitude information than in
the Symmetric-Antisymmetric decomposition. Thus, tensor inner
product of the stretch component and the direction field should

carry more of this information and be visible in the resulting de-
formations.

The electronic version of this paper and additional images are
available at www.cse.ucsc.edu/research/avis/tensor.html.

8 CONCLUSIONS

This research has focused on visualizing the symmetric portion and
the Deviator portion of real 2nd-order tensor fields using deforma-
tion of idealized objects placed in the field. By providing the user
with a controllable geometry and direction vector field, the tensor
field can be explored interactively in many directions and over large
extended regions of the field. This provides direct visual clues and
an overall sense of the tensor field behavior. Compressive and ten-
sile regions of symmetric tensors are resolved as extrusions and
depressions in the deformation of surfaces. Shear components can
be seen in wire-frame images or as expansions and compressions of
the geometry tangent to object surfaces placed in the field.

Visualization of complex tensor fields is enhanced by using the
Deviator-Isotropic decomposition. The decomposition allows re-
moval of isotropic (unidirectional) components in the field and re-
veal more of the structure that is directionally dependent.

Directional flow visualization is highly sensitive to the direc-
tional information in a resolute vector field produced from the inner
product of the the tensor field and a direction vector field. It is effec-
tive in revealing regions of tensile, compressive, and shear effects,
as well as states in between pure normal and pure shear.
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