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Abstract

We describe our efforts in providing REINAS (Realtime Environ-
mental Information Network and Analysis System) weather visu-
alization products on demand through the web. As the REINAS
research enterprise transition into operational mode, there is in-
creasing demand for wide and effective distribution of results. To
meet this demand, we provide weather products on the web as both
images and VRML worlds. The viewer selects geographic extents
and time range, as well as specific weather products. Data is then
pulled out of the database based on the user’s specifications and
fed to the visualization tools to produce the image or VRML file.
This paper describes the architecture of this end-to-end system for
delivering sensor and forecast data through the database and to the
public as VRML-based visualization products.
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1 INTRODUCTION

As the Internet becomes commonplace, there is a greater demand
for access to scientific information, in a readily accepted multime-
dia format such as VRML (Virtual Reality Modeling Language).
Scientists and programmers trying to make their results and tools
available on the web often face a tremendous difficulty in bridging
the gap between large amounts a varied scientific data and the vi-
sualization packages requiring rigid input formats. Environmental
data, for example, is diverse in terms of origin and formating and is
produced at a high rate. A lay user would require extensive training
before he or she is able to formulate a proper request for a specific
section of a dataset, and then visualize it. Therefore the task of
sifting out the required data is put in the hands of the web-page
creator. The final outcome is usually a pre-packaged web product,
where the data is collected beforehand and an image is produced
at regular intervals. The end user is thus stripped of the privilege
of viewing the latest available data, or interacting with the dataset;
instead they face the choice of several predetermined outputs.

We propose an integrated visualization system, where the basic
selection of the data is done by the end-user. We accomplish this
by integrating our visualization system with a database containing

environmental data collected in the Monterey Bay for the last four
years.

The highlights of the visualization system that we describe in
this paper are: its integration with a database front end that enables
data to be queried and retrieved using a user-driven, web interface;
the ability to specify both the geographical and time parameters of
the data requested; the ability to query and display realtime data as
soon as they become available in the database; and the generation
of visualization product on demand through the web.

In the next sections, we discuss the background work and our
motivation for creating a new visualization system and placing it
on the World-Wide Web, followed by an overview of the REINAS
project in order to provide a context for the design considerations
that were made; next we have the architecture and major compo-
nents of the our system; followed by a description of the individual
tools and elements involved in creating the VRML output; a short
discussion on the desired features in VRML and a status and sum-
mary section.

2 BACKGROUND AND MOTIVATION

The traditional means of distributing hand drawn weather products
have been painstakingly slow. As computing power and commu-
nication bandwidth increased, the turnaround time for generating
weather products have been shortened. For example, the National
Weather Service (NWS) provides hourly updates of wind readings
around the San Francisco peninsula [8].

With the growth of Internet we are starting to see more applica-
tions interactively available over the Web, such as WXP [10] - "The
Weather Processor". Nowadays we can “monitor” the environment
with instantaneous readings from a pre-specified view and a number
of sensors through the web [4]. Other tools, like Vis-a-Web [7],
even provide visualization service on the net. Furthermore, [12]
describes a scenario where the web publisher mounts the raw data
on the Web, and the viewer accesses this data through a modular
visualization environment such as the IRIS Explorer. Our goal is to
combine the power of the database, the web, and VRML to provide
sophisticated 3D weather products on-demand that the users can
interact with.

To accomplish that one needs visualization software that can
map the data returned from the database into an interactive image
or a VRML file. Through the years, universities and research
labs have created a number of tools to address the visualization
needs of different scientific communities. For example, Vis5D [3]
and GEMPAK [1] are geared towards 3D meteorological data and
provide almost all standard imaging options,while VTK [6] is an all-
around visualization toolkit. In addition, powerful general-purpose
commercial visualization packagessuch as Data Explorer (DX) and



AVS can certainly serve the purpose of making visualizations out
of scientific data.

While these systems focus on or can be tailored to the environ-
mental visualization arena, they do not address all of our project
requirements, which are:

� Integrate data from geographically dispersed sensors showing
both observed values and interpolated fields. These include
sparsely distributed in-situ sensors, remote sensors, as well
as numerical model simulations.

� Support sensors that collect different types of data, stored
in different formats, and of different temporal density and
spatial dimensionality.

� Interactively select the region, time range and type of data of
interest.

� Access to data in realtime as they are collected, as well as
access through files for backward compatibility.

In addition, we had commitments to our users to provide a
visualization environment that can monitor current conditions, but
also provide a retrospective analysis of past data; tools that can
display forecast products and experimental results; and last, but
not least, we wanted to service the general public by providing
web products on demand. To accomplish this we had to resort to
a new paradigm: a data-independent system which would allow
file-loading, but primarily rely on interactive requests for specific
data from a vast database.

Our work in creating this model has been preceded by sev-
eral important examples of linking data inquiry and retrieval with
VRML-based visualizations. As an example, Elvins and Jain [2]
present a system for choosing a volumetric dataset, and creating
isosurfaces "on-the-fly". Our project follows this line of work, but
concentrates on extracting data with very precise requirements and
produces a variety of visualizations.

3 REINAS OVERVIEW

The REINAS system is now an operational regional laboratory
for research in meso-scale meteorology and oceanography. It is
developed through a multi-year effort by the Baskin Center for
Computer Engineering and Computer Science of the University of
California, Santa Cruz (UCSC), in cooperation with environmental
scientists from the Naval Postgraduate School (NPS), and Monterey
Bay Aquarium Research Institute (MBARI). REINAS provides ac-
cess to a variety of measurements, in real-time and retrospectively,
for the Monterey Bay region of the California Coast. Data from
REINAS supports research in modeling and forecasting, as well
as nowcasting that is accessed by an large number of users over
the Internet / World Wide Web interface. Advance visualization
tools provide the research users with support of examining data in
multi-dimensions, and for combining the results of measurements
and models.

Online information about REINAS, including technical reports,
are available from http://www.cse.ucsc.edu/research/reinas.

The goal of this project is to bring modern technologies to
bear upon the problem of realtime environmental (oceanographic
and meteorological) data acquisition, management, and visualiza-
tion/analysis. As a focus area, we are looking at the phenomena
within the regional scale of Monterey Bay, California. Since physi-
cal changeshappen at much smaller time scales within our region of
interest (compared to global or climate studies), the main challenge
of REINAS is to provide realtime environmental information of the
physical parameters.

Figure 1 shows a high-level view of the system and its three
main components: data acquisition, data management, and data
visualization.

products/analysis
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Figure 1: Major REINAS components.

Data is acquired from a variety of sensors, some of which are
on buoys, CODARS (radar based ocean current measurements),
wind profilers (measuring wind at different elevations), radioson-
des, but most commonly from meteorological stations. These data
are tagged and stored in our database,one datatable per sensor. Each
table contains fields specifying the time and location of the mea-
surement, along with the sensor-specific data output. This design
is matched by the datastructures used in the database APIs.

3.1 Database API

We have two primary application programming interfaces (APIs)
for allowing REINAS applications a uniform access to our database.
These are the RSObject, which provides an interface to the full
featured schema at a higher level; and the REINAS low level API,
which provides a mechanism to pass SQL queries to the database
engine directly, or call up predefined statements which encapsulate
the most popular SQL queries. For all but the simplest queries we
rely upon RSObject to provide the type checking, security and data
organization necessary for effective gathering of specific parameters
from the database.

The RSObject API allows the user to specify the parameter type
and the temporal and geographic range of the desired data as part
of an RSObject structure. If known, a specific instrument or sensor
name can also be requested. A simple RSGet call then populates
the structure with the requested measurements.

4 VISUALIZATION ARCHITECTURE

We now describe how the data returned through the RSObject API
are rendered by the REINAS visualization system called PET SLUG
[5]. PET is an acronym for Products, Elements, and Tools which
reflects the modular architecture of the visualization system. It
was originally developed using OpenGL, C++, and xforms [13]
for improved portability. PET SLUG has since been extended to
produce VRML output files as well.

It uses a tool-based approach where users activate one or more
visualization tools to visualize their data. Figure 2 shows the graph-
ical interface of PET SLUG.

PET SLUG is designed to be readily extended by users with
varying requirements and levels of expertise. As such, it is orga-
nized into a three level hierarchy: products, tools, and elements.
Products are collections of tools with specific preset parameters and
data (see Figure 3). In this way, a first time or casualuser can simply
open a product file and see a meaningful visualization. An exam-
ple might be a temperature isosurface that is pseudo-colored with
pressure values over the Monterey Bay. The more sophisticated
user, on the other hand, is more likely to use the tools directly to
customize their visualization. Typically, a tool is used to implement
a common visualization method such as isosurfaces, contour lines,
streamlines, etc. Tools can be composed from other tools and even



Figure 2: Graphical interface of PET SLUG showing visualizations
a variety of realtime environmental data.

smaller building blocks called elements (see Figure 4). Elements
are small C++ programs with a common API that are linked into
PET SLUG at run time.

Examples of elements include different types of spatial and
temporal interpolators, glyph makers, data transformation modules,
etc.
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Figure 3: Visualization products are composed from one or more
tools with inputs bound to specific data sets.
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Figure 4: Visualization tools are made up of one or more elements.

PET SLUG currently provides a number of visualization tools
– including both single-element and multiple-element tools. Each

tool can be instantiated more than once if multiple copies are needed.
Different data sets can be bound to different tool instances. Each
tool may have an optional graphical interface specific to that tool.
For example, an isosurface tool will have a slider for specifying a
threshold value. Among the tools available in our current release
are:

1. Balloon tool for displaying one or more radiosonde data from
weather balloons. A variation of this tool can be used to
display data from drifting buoys. Another variation is used
to display data collected from an aircraft.

2. Contour tool for displaying iso-bars and iso-therms.

3. Coastline tool for displaying higher resolution coastline data
over selected region.

4. Interpolation element for spatial/temporal interpolation of en-
vironmental data.

5. Isosurface tool used to visually delimit the portion of gridded
data that is below the given threshold value.

6. Mini-cubes/mini-spheres tool for displaying properties of
large volumes at each data point.

7. Pseudo-colored grid tool for displaying 2D layers of data.
Several options for mapping data values to color are provided
and can further be edited by the user.

8. Quake tool for displaying fault lines and earthquake events.

9. Satellite tool for displaying GOES7, GOES9 (1km and 4km)
images at various display resolutions.

10. Station tool for displaying information from one or more
stationary meteorological stations and buoy sites.

11. Terrain tool for displaying topography/bathymetry of selected
region.

12. Vector plot tool for displaying vector information such as
those from CODAR (ocean surface current data) and vertical
wind profilers. This tool provides several types of glyphs for
representing vector information: arrows, barbs, and uncer-
tainty glyphs [11].

The output from these visualization tools are sent to one or
more graphics windows. Each window may have its own region,
camera, and associated set of tools. Thus, a graphics window and
its contents corresponds directly to a visualization product. One of
features supported by PET SLUG is the ability to customize, save,
and edit these windows. Information about tools, datasets, including
window placement, etc. are included in the saved information. This
is useful if a user usually examines a set of queries over a particular
region or if the user need to continue from an earlier session. This
is also the mechanism in which a visualization product request is
passed from the web interface to our server, as described in more
detail in the following section.

5 WEB INTERFACE AND IMPLEMENTATION

5.1 Adding VRML support to PET SLUG

When working on converting our PET SLUG to a program ac-
cessible on the Web, we immediately took to switching OpenGL
objects to VRML shapes. The initial experience was that VRML
is extremely flexible and simple in terms of object definition and
positioning and our OpenGL graphics primitives were quickly trans-
formed into respective VRML shapes.



Figure 5: The region selection interface http://www.cse.ucsc.edu/research/slvg/slug.html

However, in the course of joining the pieces together and creat-
ing the web interface we came upon a few stumbling blocks specific
to creating VRML worlds, namely:

� Combining the graphical output of several tools. Since each
tool is a separate entity creating only nodes and viewpoints,
there had to be an additional step to inline and provide a
header for all the individual VRML outputs. This task was
left to the cgi script at the end of the session. The fact that
VRML allows multiple independent object and viewpoint
definitions made our job much easier.

� Choosing the initial viewpoint. We decided to have the main
viewpoint be the one created by the tool producing the terrain,
and each component adding a viewpoint that zooms into the
graphical element created by it. This way the user is first
given an overview of the entire scene, and then allowed to
view the details at closer range.

� Placing the individual graphical elements in world space.
While some tools produce geometry placed at the origin (such
as the terrain tool), most follow the geographic location of
the data. These differences were reconciled by subtracting
from all tools the minimum latitude and longitude of the
terrain boundary, thus effectively registering all objects with
the terrain.

5.2 User Interface

For the web interface we used a Java program with an embedded
image of the world’s topography. Using the mouse users can rub-
berband a rectangular region which is converted to latitude and
longitude coordinates, as pictured in Figure 5. Also provided is the
choice of tools and the time range for the data selection.

5.3 Server Setup

On the http server side, the script parses the parameters received
from the Java applet and creates a session file to be used as input
to PET SLUG. The time range specified in the file is ten minutes
before, up to the time chosen by the user.

To avoid files being overwritten due to multiple hits, each input
file is tagged with the process ID of the running CGI script. The cgi
script then calls the PET SLUG program with the input filename as
argument. The input file contains the description of the requested
times, datasets and tools, as well as the coordinates of the spatial
boundary. Upon processing the input, PET SLUG opens a connec-
tion to the database and obtains the requested data. At the same
time tools listed by the session file are started and matched with the
appropriate datasets as they become available.

Each tool creates a single VRML file containing the shapes and
viewpoints. As the last step, the individual outputs are combined
into a single file which is then returned by the cgi script back to the
user in the shape of a dynamic link to the VRML world.



6 RESULTS

In this section, we present some of the visualization tools that have
VRML interfaces for generating visualization products on the web.

6.1 Terrain

Using the given coordinates, the terrain tool extracts the necessary
subsetout of the world elevation databaseand creates an topography
map. We have used the Digital Elevation Map file etopo5, available
from USGS [9] The elevation values are exaggerated to give the
terrain a visible relief, and height is also used to produce a texture
map coded to the appropriate geographical color-scheme. The
output is an elevation grid, the VRML shape well suited for the
task of creating terrains. Dependent on the scale of the selected
region, the resolution of the terrain grid varies, in order to keep
the size of the output file relatively small. We have decided not to
compress the .wrl files, as some browsers still don’t recognize the
file extensions.

There is one aspectof the elevation grid construction that caused
some confusion - the fact that the grid is layed out in the XZ plane.
Our system was created with the assumption that the terrain and
other GIS objects exist in the XY plane with the viewer position
along the negative Z axis. Due to this restriction, all other tools had
to be adjusted for the new layout.

6.2 Station

This tool creates an object representation for weather stations and
their corresponding readings – temperature, wind, etc. The stations
are chosen based on the terrain boundary, that is, the database is
searched for all met-stations in the region and the corresponding
visualizations created. A glyph is used to represent each station
and consists of a cylinder with an arrow stemming from its center
- a graphical setting we have in both versions of PET SLUG. The
color of the cylinder is mapped to temperature, the direction of the
arrow to wind, and length of it to wind speed.

Figures 6 and 7 show the images of the station and terrain tools
before and after VRML conversion of PET SLUG.

The graphical elements are used as a quick overview, but for
the exact measurements the user is invited to click on an individual
station, which causes a listing of all parameter names and values to
pop up This option is a feature we built into the VRML version of
PET SLUG since it was relatively simple to add without having to
handle picking. Each station node has a hidden text field, displayed
only when the object is clicked on. We accomplish this by creating
transparent text, and routing the isActive event of cylinder node to
the set transparency event of the text node. Here is the piece of
code facilitating the message passing:

DEF Toggle Script {

url "vrmlscript:

function set_boolean (bool) {

if (bool==true) {tran = 0;}

else {tran = 1;}

}"

eventIn SFBool set_boolean

eventOut SFFloat tran

}

ROUTE CylSens.isActive TO Toggle.set_boolean

ROUTE Toggle.tran TO TxtMat.set_transparency

The text is kept facing the viewer with the use of a billboard node
as a parent to the text node.

6.3 Wind Pro�ler

Wind profiler tool is similar to the station in that it displays a glyph
at the location of each wind profiler. A windprofiler glyph consists
of arrows of different vertical levels showing the direction and
magnitude of wind vectors at that height.

6.4 Interpolated Winds

With singular wind profilers, it is difficult to observe the wind pat-
terns in an area. For this reason we provide an alternative, where we
gather wind information from all available sensors (on met-stations
or wind-profilers) and use inverse multiquadric interpolation to cal-
culate the intermediate values. The area over which we interpolate
is a gridded region bounded by the extreme latitude and longitude
values found among the sensors. Wind intensity is mapped to color,
in order to avoid clutter among narrowly spaced glyphs. The VRML
shape of choice for both of the wind tools is IndexedLineSet.

An example of interpolated winds is seen in Figure 8.

Figure 6: Three station glyphs with terrain

Figure 7: Three station glyphs with terrain - the VRML version.
The text is appearing above the activated station

The glyphs for all tools are scaled according to the terrain bound-
aries, a step intended to keep a match among the object sizes.

7 DISCUSSION

In general, our experience in creating VRML-based visualizations
has been a positive one. We do however regret not being able to
create the interface tool in Java and shortcut the long-winded path
from Java to the cgi script, to PET SLUG, to VRML, and back as a



URL. The Java security restrictions have forced us to use cgi and c
programming as a way to access the database and local files.

In terms of VRML, we see several desirable extensions:

� Glyph prototypes. While it is easy to create simple glyphs,
we believe it would aid novice VRML users to have a few
common graphical constructs handy. For example, a garden-
variety of arrow prototypes could become part of standard
VRML.

� Irregular grids. In order to adequately represent Earth’s cur-
vature it will be necessary to support grids other than stan-
dard. We need to have a method for describing grids where
the distances between cells may vary - say an array for row
and column cell distances.

� Automatic LOD for ElevationGrid. Varying levels of detail
are easily achieved with grids by subsampling. Why not
allow users to create a new LOD by simply specifying the
skip in both directions ?

8 SUMMARY

We described an end-to-end system that brings data from remote
sensors and computer simulations, through a database, then a visu-
alization system, and to users through a web interface that provides
VRML output. One unique aspect and challenge of this work is
the generation of the visualization product on-demand using the
latest available information, sifted out from gigabytes of data. Our
goal is to provide as much of the PET SLUG functionality to web
users. We have achieved the first step in providing users with a set
of visualization products to choose from. The logical next step is
to provide interaction capability at the tool level where users can
set tool parameters and customize their own visualization product.
Among our planned future enhancements are adding more tools
with web interactivity including a new source of data, NEXRAD,
which provides volumetric information of the atmosphere.
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Figure 8: Interpolated wind vectors


