
IFS Fractal Interpolation for 2D and 3D Visualization1

Craig M. Wittenbrink

Baskin Center for
Computer Engineering & Information Sciences

University of California, Santa Cruz
Santa Cruz, CA 95064 USA

Abstract

Reconstruction is used frequently in visualization of
one, two, and three{dimensional data. Data uncer-
tainty is typically ignored, and a de�ciency of many
interpolation schemes is smoothing which may indi-
cate features or characteristics of the data that are not
there. In this paper I investigate the use of iterated
function systems (IFS's) for interpolation. I show new
derivations for fractal interpolation in two and three-
dimensional scalar data, and new point and polytope
rendering algorithms with tremendous speed advantages
over ray tracing. The interpolations may be used to
give an indication of the uncertainty of the data, sta-
tistically represent the data at a variety of scales, allow
tunability from the data, and may allow more accurate
data analysis.

Key Words and Phrases: uncertainty visualiza-
tion, volume rendering, surface interpolation, collages.

1 Introduction

Reconstruction is often used in visualization to �nd
values in between sampled points. As an example,
time series plots of a single variable, say temperature,
can be plotted with a line plot simply by drawing a
line segment between each temperature measurement.
This simple algorithm performs a linear reconstruc-
tion. The sampled temperatures are linearly inter-
polated between each sample point. Reconstructions
are also used in higher dimensions to create: contours,
pseudo{color cut planes, streamlines, volume visual-
izations, isosurfaces, triangulations, and height �elds.
In the environmental sciences, oceanography and me-
teorology, the original data is either measured or com-
puted. The fact that the data is experimental means
that it has statistical variation or uncertainty. If linear
interpolation (or cubic or polynomial, etc.) is used an

1This project is supported by ONR grant N00014-92-J-1807
and NSF grant IRI-9423881

un{implied smoothness results. These shortcomings
have been well noted in the visualization community
[16].
We are actively investigating displaying uncertainty

in visualizations [18, 19]. Uncertainty visualization is
challenging, because of the di�culty in combiningmore
variables into a graphic. One method of combining
uncertainty is overloading{ or tying a free parameter,
such as color, to the uncertainty. We have researched
the use of glyphs for visualizing uncertainty in vector
�elds [18] and in surfaces and animations [19]. A choice
of interpolant allows one more method of overloading.
In essence the reconstruction can be controlled by
the uncertainty data allowing additional data to be
incorporated.

V0

V1

V2

V3

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!

K

T1(K)

T0(K) T2(K)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Figure 1: One{dimensional IFS fractal interpo-

lation.

Figure 1 shows an iterated function system (IFS)
fractal interpolant interpolating several points. Frac-
tals have been applied to modelling [2, 5] and to anal-
ysis. There have been two main approaches in anal-
ysis: fractional Brownian motion (fBm) and IFS's [1,
10]. Self similar or fractal functions have been used
to represent digital elevation maps, time series data
[9], seepage in settling tanks, radar returns, and at-
mospheric turbulence. The majority of this work has
been for one{dimensional functions (IFS's) [1, 14], for

two dimensional height surfaces (fBm), and for fractal
interpolation of images [12, 17].

I recently discovered IFS research similar to my own.
Massopust [8] has investigated two{dimensional frac-
tal interpolation and continuity conditions. Tong et
al. [15] developed a system of equations to interpolate
a two-dimensional function, and a recursive algorithm
similar to the iterative one I present. Berger [4] devel-
oped a triangular collage of a regular grid for images
and surface extrapolation.

I present fractal interpolation functions using IFS's
for two and three dimensions. I also apply these so-
lutions to some illustrative examples. The ability to
use an interpolation function that preserves the char-
acteristics of the data, as well as prevents misinter-
pretation because of over smoothing is a considerable
advantage. I show that triangular tessellations of two{
dimensional domains, and tetrahedral subdivisions of
three{dimensional domains provide fractal interpolants
which �t the data and have tunable parameters. Tech-
niques for calculating the interpolants, and for render-
ing that takes advantage of existing graphics hardware,
are presented. I take a brief look at the setting of the
free parameters, and discuss what is required to apply
my interpolants to large data sets. The extension of
IFS techniques to two and three dimensions is exciting,
and leads to many avenues of further research. First I
will introduce IFS fractal interpolants to demonstrate
the additional parameters that may be controlled.

2 IFS Fractal Interpolants

IFS fractal interpolation de�nes complex functions
with economy and elegance. By constraining a func-
tion to the data points, insuring that the set of a�ne
maps that de�ne the IFS are contractive and tile the
domain, a deterministic fractal function results. Barns-
ley demonstrates IFS fractal interpolation with one di-
mensional functions [1], and also shows how to provide
more free parameters, several ways to render them,
and gives hints that further special conditions may be
imposed. The one-dimensional function fractal inter-
polant with one free parameter per a�ne map has been
widely used [1, 8, 9, 14, 17].

An a�ne transformation is de�ned as a transforma-
tion which preserves ratios of distances, and parallel
lines remain parallel. A�ne transformations are the
basis for much of computer graphics. I show here a
two dimensional homogeneous coordinate transforma-
tion, T .

T =

2
664

a11 a12 t x

a21 a22 t y

0 0 1

3
775 (2.1)

The a's perform shears and scales, and the t's per-
form translations. Now, a two dimensional a�ne trans-
formation may be applied to two dimensional points. I
denote a two{dimensional point by p = [x; y; 1]T , and a
three{dimensional point by p = [x; y; z; 1]T . To apply
the transformation simply post multiply the matrix by
the point , p0 = Tp. De�ne y as the function value and
x as the domain of the function, y = f(x). An IFS is
de�ned [1] as a complete metric space (X; d), (we can
�nd well de�ned distances between points), and a �nite
set of contraction mappings, Tn : R2 ! R2 with re-
spective contractivity factors sn, for n = 0; 1; :::; N�1.

X; Tn; n = 0; 1; : : : ; N � 1; (2.2)

s = Maxfsn : n = 0; 1; : : :; N � 1g

To create an interpolating IFS, set up some con-
straints on the mappings Tn; n = 0; 1; : : :N � 1. The
points to be interpolated are transformed to other
points to be interpolated, and the contractivity is in-
sured by appropriate choice of free parameters. With
a12 = 0 and choosing a22 as the free, \scaling" param-
eter, the classic fractal interpolation results [1, 17]. As
an example, look at the fractal interpolation in Figure
1, where a22 is :23, �0:3, and :31 for intervals T0, T1,
and T2. Setting a22 = 0 gives a linear interpolant. The
overlay of rectangular domainmappings shows how the
entire domain of the data (K) is mapped by each a�ne
transformation to a sub-interval of the data. T0 maps
to the interval between vertices V0 and V1, T0(K), and
T1 maps to the interval between vertices V1 and V2,
T1(K), and so on.
In two dimensions 3x3 a�ne transformations are

used, where T is

T =

2
666664

a11 a12 a13 t x

a21 a22 a23 t y

a31 a32 a33 t z

0 0 0 1

3
777775

(2.3)

setting a13 = a23 = 0. Constraints are made on the
point positions, and a scale parameter (a33) is input.
When the collage is chosen as a square, with the corners
as constraints, the system is over constrained with 12
equations and nine unknowns. By reducing the number
of constraints to three, nine equations result, for nine
unknowns, but a square or rectangular gridding results
in a surface interpolant with tears as shown in Figure 3.

I have therefore used triangulations, which �t naturally
using three points, and do not require least squares
�tting as is done with IFS fractal image compression
algorithms [4, 17]. A direct solutions of the linear
system is described below. Figure 2 shows the collage,
and the constraints are

Tn(V 0) = Pn0; Tn(V 3) = Pn1; Tn(V 9) = Pn2 (2.4)

where V is a vertex, P is a polytope, and n is the
member of the set of transformations n = 0; :::; N � 1.
Table 1 shows the vertex orderings for the triangle
collage. Using T from equation 2.3, a33 is used as the
scaling parameter, and a13 and a23 are set to zero.
The scaling parameter is a33, and a13 and a23 are set
to zero. Solutions for Tn, are not shown for space
considerations. With a33 less than one, the a�ne
transformations are contractive, satisfying one of the
conditions to form an IFS. Figures 3 (square patch with
tears), and 12 to 7 show surface interpolations.

!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!

V0 V1 V2 V3

T1(K)T0(K) T2(K)

V4 V5 V6

V7 V8

V9

T4(K)T3(K)

T5(K)

T7(K)T6(K)

T8(K)

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

PnV0 PnV1

PnV2
TnV9

TnV0

TnV3

Figure 2: Two{dimensional triangular tiling.

Table 1: Vertex orderings for triangle collage

polygon vertices

P0 0 1 4
P1 1 2 5
P2 2 3 6
P3 4 5 7
P4 5 6 8
P5 7 8 9
P6 5 4 1
P7 6 5 2
P8 8 7 5

In three{dimensions I use a tetrahedral decomposi-
tion, that results in a linear system of constraints on

Figure 3: two{dimensional rectangular tiling,

with tears.

the four vertices of the tetrahedron. Four equations
constraining 4x4 matrices give 16 equations and 16 un-
knowns. Figure 4 shows a tetrahedral collage. Table 2
shows the vertex orderings. The scaling parameter is
a44, and a14, a24, and a34 are set to zero to give:

T =

2
666666664

a11 a12 a13 0 t x

a21 a22 a23 0 t y

a31 a32 a33 0 t z

a41 a42 a43 a44 t w

0 0 0 0 1

3
777777775

(2.5)

V0

V1

V2

V3

T0(K)

V4

V5

V6

V7

V8

V9

TnV9

!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!

!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!

!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!

!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

PnV0

PnV1

PnV3

PnV2

TnV2TnV0

TnV5

Figure 4: Three{dimensional tetrahedral tiling.

Tn(V 0) = Pn0; Tn(V 2) = Pn1;

Tn(V 5) = Pn2; Tn(V 9) = Pn3: (2.6)

The vertices of the polyhedral domain are trans-
formed to the vertices of the subdomain similar to
the one{dimensional line and two{dimensional triangle
cases. The resulting solutions are obtained by solving
this linear system, equation 2.6. The solutions have
been omitted for space considerations. Now, a volu-
metric function may be interpolated. Figure 11 shows
an interpolation of a volumetric function using colored
points to indicate the scalar value within the volume.

Table 2: Vertex orderings for tetrahedral collage

polyhedra vertices

P0 0 3 1 6
P1 1 4 2 7
P2 3 5 4 8
P3 6 8 7 9
P4 1 3 4 7
P5 3 8 4 7
P6 6 8 3 7
P7 1 6 3 7

The collage choices made �ll the test data sets. To
collage real data sets, requires either solving for a
much larger set of transformations N, or doing some
sort of piecewise fractal interpolation. Both choices
are appropriate for certain instances. Using nonlinear
transformations is also possible, and the resulting IFS
may be constrained to be derivative continuous in some
cases. An IFS de�ned by a non{a�ne mapping with
an xy term used for a hidden variable is:

�
x0 y0 z0 H0

�>
= T

�
x y z xy

�>
(2.7)

where H0 is the input hidden variable, and a 4x4 matrix
is used for T , adding coe�cients a41, a42, t w, and free
parameters a34, a43, and a44. The transform is given
below:

T =

2
666666664

a11 a12 0 0 t x

a21 a22 0 0 t y

a31 a32 a33 0 t z

a41 a42 a43 a44 t w

0 0 0 0 1

3
777777775

(2.8)

Figures 18 to 7 show the resulting hidden bilinear
variable interpolant. The triangular collage, �gure 1,
is used. This interpolant, because of the hidden vari-
able approach, is not necessarily fractal or self similar.

There is tremendous freedom in the approach, where
other hidden variables may be used, and di�erent types
of transformations can be used. In the next section, I
will briey discuss these choices in parameters.

3 Free Parameter Choices

Free parameters discussed in the previous section al-
low users to tailor the interpolation to suit the ap-
plication. For many applications, in one{dimensional
interpolation, users have attempted to tie the free pa-
rameters to some statistical aspect of the data. One
approach is to set the scaling parameter, a22 for one{
dimensional IFS interpolants, by using the fractal di-
mension of the sample points [1]. Because the fractal
interpolant is self similar the fractal dimension of the
input points, can help choose the scaling parameter.
Even with a �xed fractal dimension there can be a
large variability in the scaling parameters chosen.
The one{dimensional interpolant, �gure 1, has scale

factors selected as a22 = 0:23;�0:3; 0:31, which can be
seen to scale the three subintervals of K to their rel-
ative heights. Figures 12 through 20 illustrate several
scale factors to show examples of the available control
in two and three dimensions. The two{dimensional in-
terpolant, with nine transforms de�ning the IFS, has
nine free scaling parameters. Figures 12, 13, and 14
(Figures 15, 16, and 17 for surface renderings of the
same IFS) show setting all of the parameters to a mag-
nitude of 0:0, 0:3, and 0:6, and alternating the sign.
The variation in height varies more as the scaling pa-
rameter gets larger. My bilinear term IFS was also var-
ied with di�erent scale parameters. Figures 18, 19, and
20 show scale parameters set to 0:00, 0:01, and 0:02.
The hidden parameters were not changed, and addi-
tional interpolants can be created by using di�erent
projections of the higher dimensional IFS. The choice
of the scale parameter from the data remains to be
done, and is application dependent. In geology, for ex-
ample, there are numerous methods for computing the
fractal dimension [3] which could be used to choose
the free parameters. Other approaches are to select
both the interpolation points and the free parameters
to �t the data in some fashion [14]. These issues have
been examined somewhat for the one{dimensional in-
terpolants, and further work needs to be done for the
higher dimensional interpolants.

4 Rendering IFS Fractal Interpolants

Rendering of fractals involves computing a lighting
simulation of how light may interact with the fractal.
The space in which the fractal lives may be discretized,

and a discrete IFS computed [1]; the space can be
ray traced by approaching the fractal with incremental
sample points along view rays [6, 7], ray traced in a re-
duced complexity two{dimensional algorithm [10]; ray
traced by crawling around the fractal [11]; or geomet-
ric primitives can be created from the IFS. I have been
rendering IFS using the latter approach. I build up
the IFS and give the result to the graphics hardware
(currently using Iris GL). Initially I experimented with
rendering using only points, using a random IFS algo-
rithm [1]. For surfaces and volumes this at least gives
a quick method for testing if the IFS converges, and
with animation/spinning of the data, one can visualize
the three{dimensional nature of the data.

A more advanced rendering/generation method is
iterating on primitives, say a triangle, or a tetrahedron,
by a deterministic algorithm. The successive sets of
primitives converge to the attractor of the set. I have
implemented points and triangles so far, and present
the algorithms below.

The IFS constructive approaches, both random and
deterministic, are very useful, and have several trade-
o�s for rendering. To calculate the random algorithm
choose a point on the set, such as one of the vertices
which are being interpolated. Then pick randomly
from the set of transformations, and apply that trans-
formation. Repeatedly picking{transforming, picking{
transforming, : : : results in a growing set of primitives
that lie upon the IFS. Figures 1 to 14 were rendered
iterating on points. The IFS random construction al-
gorithm is given below. I use a list for the generated
primitives, where makenullL initializes the list, insertL
places primitives on the list, and �rstL determines the
position at the start of the list.

input free parameters
solve for coe�cients of Tn; n = 0; : : : ; N � 1
makenullL(Primitives)
P0 = V 0
for j number of primitives to compute (number) f

randomly choose n from 0; : : : ; N � 1
P 0 = TnP

insertL(P 0 ,�rstL(Primitives), Primitives)
P = P 0

g

The random and determinstic algorithms carry out
the de�nition of an IFS, equation 2.2. The IFS can
be seen as a set, where the set is de�ned as the
convergence of an in�nite series. The attractor A is
the set that A0 converges to after repeated application
of transformations T . Each step in the iteration Aj
is the union of the transformations of the current set
Aj�1 using the N transformations that de�ne the IFS.

Aj =
N�1[
n=0

Tn(Aj�1) for j = 1; 2 : : : : (4.9)

This deterministic iteration works for multiple di-
mensions when the primitives in the set are polytopes,
P . For example, a 0 dimensional polytope is a point,
a 1 dimensional polytope is a line, and a two dimen-
sional polytope is a planar polygon. The deterministic
approach to using points is also well presented in [1],
where the deterministic algorithm takes a discrete set
of pixels, and then iterates on them until they converge
towards the IFS. I could take the same approach for the
higher dimensional rendering, but the di�culty is in
storing and rendering the resulting multi{dimensional
array. A two{dimensional IFS would create a three{
dimensional voxel volume, and a three{dimensional
IFS would create a four{dimensional volume.
A deterministic geometric algorithm is computed by

not discretizing the space. The deterministic algo-
rithm, generates a list of primitives,Aj. The algorithm
is �rst initialized with a base polyhedra P0, which can
be taken to be the domain of the input interpolated
points. The depth of the iteration, is determined by
depth . The algorithm simply applies the transforma-
tions, or maps, to each polyhedra in the previous set
Aj�1, and puts the resulting polyhedra P 0 into the
current set Aj . A list su�ces to keep track of these
polyhedra as is shown in the algorithm below where in
addition to the previously de�ned list operators I use
endL for the last item on the list; retrieveL to pull an
element from the position on the list; deleteL(pos,list)
to delete an element from a position on the list:

input free parameters
solve for coe�cients of Tn; n = 0; : : : ; N � 1
makenullL(Aj)
makenullL(Aj�1)
insertL(P0, Aj�1)
for j number of sets to compute (depth) f

while(�rstL(Aj�1) != endL(Aj�1)) f
P = retrieveL(�rstL(Aj�1))
deleteL(�rstL(Aj�1), Aj�1)
for n = 0 : : : N � 1 f

P 0 = TnP

insertL(P 0 ,�rstL(Aj), Aj)
g
swap(Aj�1 , Aj)

g
g

The mapping notation P 0 = TnP is overloading the
transform operator. This transform of a polytope is
computed by transforming each each of the polytope's
vertices. The algorithm's behavior is very interesting
to watch. Figures 15 to 10 show the output from this
algorithm. The triangles have at shaded normals cho-
sen for simplicity and speed. The normals are com-
puted by the cross product of the edges of each triangle.

Compare the output of the random algorithm's output
points in Figures 12, 13, and 14 to the polygonal result
in 15, 16, and 17. In particular, the sequence of images
in Figures 5, 6, and 7 show the iterations with the toy
data set for one iteration, two iterations, and three iter-
ations, where successively smaller and smaller triangles
are generated by the contraction mapping. The same
sequence of iterations is shown from directly above for
Figures 8, 9, and 10. The number of triangles gener-
ated at each successive stage is Ndepth, so the Figures
show for the nine a�ne maps (solved using the con-
straints in Figure 2, equation 2.4) , nine, 81, and 729
triangles.
In three dimensions, the same approach can be ap-

plied, and while I have not attempted it I believe that
the volume rendering approach of Shirley and Tuch-
man [13], could directly take the tetrahedra that result
from the deterministic algorithm. The same algorithm
is used, only the polytopes stored in the lists are tetra-
hedrons instead of triangles. Because the set Aj is
computed once (after termination), and then can be
re-rendered, the interactivity for various view points is
very good. The complexity of the random algorithm is
O(n) where n is the number of points. The space com-
plexity is O(n) as well. The time complexity of the
deterministic geometric algorithm is O(Ndepth) where
N is the number of mappings in the IFS, and depth
is the number of successive sets to generate or num-
ber of outer loop iterations. The space complexity is
also O(Ndepth) showing that both algorithms simply
do O(n) work for n primitives, and use O(n) space to
store them.

5 Summary and Conclusions

Reconstruction is used in many approaches for visu-
alization. Data collection is an experimental process,
so the smoothing that results from many reconstruc-
tion schemes is not always desired. In a single dimen-
sional plot, the use of error bars or quartile plots is
an e�ective means for showing the experimental un-
certainty. But, with higher density data displays, the
same type of glyph approach is not as e�ective, espe-
cially for higher data densities. I investigated the use
of fractal interpolation in performing reconstructions in
two and three{dimensions. I especially wanted to see
if it was possible to derive fractal interpolants for two
and three-dimensions. The use of fractal interpolation
is especially intriguing for volumetric data rendering.
It was also an initial hypothesis that the use of fractal
interpolation may be too expensive for interactive use
which has been shown not to be true.
In this paper I have shown that fractal interpola-

tion is possible for two and three-dimensions. I have

shown how to derive the interpolants, and used a col-
lage scheme of triangles for two{dimensions and tetra-
hedrons for four{dimensions. The iterated function
systems (IFS's) that I derived also have the property
that one may control the scaling, and when the scal-
ing is set to zero, a linear interpolant results. I also
derived a hidden variable fractal interpolation for two
dimensional scalar data. The use of hidden variables
allows for many more free parameters to control the
visualization, and additional data sets can be tied to
these parameters to overload the visualization.
I also investigated the rendering of my IFS's. I have

developed a deterministic rendering algorithm, which
doesn't use a discretization of the space, but rather
a geometric/object representation. The results of the
algorithm are geometric objects, points, lines, trian-
gles, etc. that can be directly sent through the tradi-
tional graphic pipeline. By generating such primitives,
I avoid the computational expense of prior ray tracing
approaches. The number of primitives is controllable
simply by choosing the amount of iterations, where
with each iteration the set of polyhedra computed is
a closer approximation of the IFS attractor. The al-
gorithms are fully interactive on SGI Indy level work-
stations, and although one can easily generate enough
primitives to saturate any workstation, a reasonable
number of primitives gives good results.

Acknowledgments

My most sincerest thanks goes to the supportive
and synergistic visualization research made possible
by Alex Pang, Jane Wilhelms, Allen Van Gelder, and
Suresh Lodha at UCSC. I would also like to thank the
keen suggestions of the Vis'95 reviewers.

References

[1] M. F. Barnsley. Fractals Everywhere. Acad. Press,
1988.

[2] M. F. Barnsley et al. Harnassing chaos for image syn-
thesis. In Proc. SIGGRAPH, pages 131{140, Atlanta,
GA, Aug 1988. ACM.

[3] C. C. Barton and P. R. L. Pointe, editors. Fractals in
the Earth Sciences. Plenum Press, New York, 1995.

[4] M. A. Berger. IFS algorithms for wavelet trans-
forms, curves and surfaces, and image compression. In
P. Barone et al., editors, Stochastic Models, Statisti-

cal Methods and Algorithms in Image Analysis, pages
89{100. Springer-Verlag, Berlin, Germany, 1992.

[5] S. Demko et al. Construction of fractal objects with
iterated function systems. In Proc. SIGGRAPH, pages
271{278, San Francisco, CA, July 1985. ACM.

Figure 5: IFS polyhedral ren-

dering, iteration 1.

Figure 6: IFS polyhedral ren-

dering, iteration 2.

Figure 7: IFS polyhedral ren-

dering, iteration 2.

Figure 8: IFS polyhedral ren-

dering, top view, iteration 1.

Figure 9: IFS polyhedral ren-

dering, top view, iteration 2.

Figure 10: IFS polyhedral

rendering, top view, iteration

2.

[6] J. C. Hart and T. DeFanti. E�cient antialiased render-
ing of 3-d linear fractals. In Proc. SIGGRAPH, pages
91{100, Las Vegas, NV, July 1991. ACM.

[7] J. C. Hart et al. Ray tracing deterministic 3-D fractals.
In Proc. SIGGRAPH, pages 289{296, Chicago, IL, July
1989. ACM.

[8] P. R. Massopust. Fractal Functions, Fractal Surfaces,

and Wavelets. Academic Press, San Diego, CA, 1994.

[9] D. S. Mazel and M. H. H. III. Fractal modeling of time-
series data. In Asilomar Conference on Sig., Sys., &

Comp., pages 182{186, Paci�c Grove, CA, Oct. 1989.
IEEE, Maple Press.

[10] G. S. P. Miller. The de�nition and rendering of terrain
maps. In Proc. SIGGRAPH, pages 39{48, Dallas, TX,
Aug 1986. ACM.

[11] A.Norton. Generation and display of geometric fractals
in 3-d. In Proc. SIGGRAPH, pages 61{67. ACM, July
1982.

[12] D. Saupe and R. Hamzaoui. A review of the fractal
image compression literature. Computer Graphics,
28(4):268{279, Nov. 1994.

[13] P. Shirley andA.Tuchman. Apolygonal approximation
to direct scalar volume rendering. In 1990 Workshop

on Volume Visualization, pages 63{70, San Diego, CA,
Dec 1990.

[14] W. C. Strahle. Turbulent combustion data analysis
using fractals. AIAA Journal, 29(3):409{417, 1991.

[15] H. Tong et al. Natural mountain simulation based on
3-D IFS. In Proc. of the Third Int. Conf. on CAD and

Comp. Graph., pages 101{105. Chinese Comput. Fed.,
Int. Acad. Publishers, Aug. 1993.

[16] S. Uselton et al. Panel: Validation, veri�cation, and
evaluation. In Proceedings of Visualization 94, pages
414{418. IEEE, Oct. 1994.

[17] G. Vines. Signal Modeling with Iterated Function Sys-

tems. PhD thesis, Georgia Inst. of Tech., 1993.

[18] C. M. Wittenbrink et al. Glyphs for visualizing uncer-
tainty in environmental vector �elds. In SPIE & IS&T

Conf. Proc. on Elec. Imag.: Visual Data Exploration

and Analysis, pages 87{100, color plate 206, Feb. 1995.

[19] C. M. Wittenbrink, A. T. Pang, and S. Lodha. Ver-
ity visualization: Visual mappings. Technical report,
Univ. of Cal. Santa Cruz, 1995.

Figure 11: Three-dimensional fractal interpola-

tion using tetrahedral polytopes.

Figure 12: Surface IFS scale

a33 = 0.
Figure 13: Surface IFS scale

a33 = 0:3.
Figure 14: Surface IFS scale

a33 = 0:6.

Figure 15: Surface IFS scale,

polygon rendering a33 = 0.
Figure 16: Surface IFS scale,

polygon rendering a33 = 0:3.
Figure 17: Surface IFS scale,

polygon rendering a33 = 0:6.

Figure 18: Bilinear Surface

IFS scale a33 = 0:00.
Figure 19: Bilinear Surface

IFS scale a33 = 0:01.
Figure 20: Bilinear Surface

IFS scale a33 = 0:02.

