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Abstract. Validation and verification of visualization products is an integral part

of the visualization process. This paper focuses on measurements and techniques

for comparing the quality of meshes produced by (a) different hierarchical multi-

resolution (HMR) methods and (b) different levels of detail for a given multi-

resolution method. The main contribution from such techniques is a better un-

derstanding of the quality of competing HMR approaches, and the location and

degree of degradation as one goes to a coarser or denser representation. We report

on a number of statistics for comparing different surface meshes and how these

may be visually presented in a number of insightful ways.

Key Words and Phrases: decimation, simplification, multiresolution, surface qual-

ity, comparison metrics, computational geometry.

1 INTRODUCTION

This paper provides a means for understanding the behavior of a class of visualization

algorithms. In particular, we focus on hierarchical and multi-resolution (HMR) meth-

ods. In multi-resolution visualization, surface data is often represented in the form of

triangular mesh data. There are a number of data compression and mesh simplification

algorithms ready for use today. What is currently lacking is a systematic way for users

to assess and evaluate these different algorithms to see if it is suitable for their needs.

To give a general solution and improve the accuracy of scientific visualization, we

propose in this work error metrics to quantify the uncertainty and visualization methods

to present the uncertainty. We applied our analysis and visualization system on a set of

mesh simplification and refinement algorithms. We expect this analysis and visualiza-

tion system to be used in comparing results from different multi-resolution algorithms

as well as the results from isosurface and tetrahedralization computations. We report

a number of statistics for comparing different surface meshes and how these may be

visually presented in a number of insightful ways. The comparison framework allows

for plug-and-play extension of new HMR methods as they become available, new do-

main specific metrics to meet the needs of the scientists, new visual and other mapping



strategies to better convey the comparisons, and new data formats to accommodate dif-

ferent standards. The goal is to provide an environment where a systematic comparison

of different HMR algorithms may be carried out.

Surface meshes are prevalent in computer graphics for representing geometry and

in visualization for representing features in the data set. Among the statistics that can

be gathered when comparing two different meshes are: (a) basic measurements such

as number of points, polygons, and connected components; (b) distance measurements

such as minimum, average, maximum distance; (c) basic measurements such as area

and volume (if closed); and (d) surface properties such as topology and curvature. Af-

ter these statistics are collected, they can then be mapped using a variety of visual

techniques to convey how the two surface meshes are different. Among the techniques

we have investigated are: pseudo-coloring, glyphs, animation, transparency and texture

mapping. These two suits of measurements and visualization are brought together in an

easy to use system that allows a user to load meshes in a number of file formats, select

one or more comparison metric, and map them using one or more desired visualization

technique. Included in the HMR mesh representation schemes that we currently include

in our comparisons are: Quadric Error Metrics [9], Simplification Envelopes [5], Mesh

Decimation (Jade) [3].

2 BACKGROUND

2.1 HMR Methods

HMR methods are primarily used to improve interactivity by providing lower resolution

models that use less storage and processing. Mesh compressions methods also lower

storage requirements by reducing the number of bytes required to represent the mesh.

Both are used extensively in interactive visualization of very large data sets. Both also

have lossy as well as lossless variants. Most HMR methods are not lossless and are not

able to reconstruct the original model exactly. In this paper, we focus on the lossy HMR

methods although the comparison framework can easily be extended to study the lossy

mesh compression methods as well.

There is a very rich set of HMR methods that reduce the complexity of polygonal

models. Different methods provide different capabilities such as support for progressive

transmission, continuous level of detail, reconstruction of the original model, etc. In

this section, we review several classes of these algorithms including: vertex removal,

edge collapse, simplification envelope, wavelet approach, etc. Geometric features are

employed in making decision in each simplification step. Some of the algorithms use

distance, face size, face normal, volume, or angle based, or specific metrics such as

error quadrics, together with some energy or cost function.

Methods Employing Distance Measure

Schroeder et al. [22] used the distance of a vertex to an average plane as the error

control mechanism in triangular surface decimation. The average plane was computed

by averaging all incident triangles, comprehensively accounting for their normal vector,

centers, and areas. Another criterion used is based on angles to account for curvature.



Their algorithm made multiple passes over a triangular mesh to remove vertices using

these two criteria.

Bajaj and Schikore [1] extended techniques for mesh simplification that took into

consideration the effects on variables defined over the mesh as the geometry of the mesh

was simplified. Again, errors in both the geometric representation and the multivariate

data were bounded by user specified values.

Ciampalini et al. [3] reported a mesh decimation algorithm based on global error

management. Their algorithm employed distance measurements including symmetric

Hausdorff distance between two surfaces and produced multi-resolution representation

of input objects.

Klein and Krämer [16] presented an algorithm that used a modified one-sided Haus-

dorff distance between the simplified and original surfaces as an error measure. Their

algorithm handled parameter-independent surfaces and also dealt with cracks and dis-

continuity.

Shekhar et al. [23] reported on an octree-based decimation of marching cubes sur-

faces. Using a modified marching cubes algorithm, a bottom-up approach was used

to merge cells containing relatively flat surfaces as long as they are within some user

specified error bound.

Lee et al. [18] presented a multi-resolution adaptive parameterization of surfaces

(MAPS) which allowed for hierarchical subdivision re-meshing with guaranteed error

bounds. Hierarchical simplification was carried out with vertex removal based on ge-

ometry and topology information.

Methods Employing Curvature Measure

Turk [27] presented an algorithm that redistributed vertices over a model such that

it captured the geometry and topology of the original surface. Shape consistency was

maintained by assigning more vertices to regions with higher curvature and less vertices

to regions with lower curvature. A number of other researchers [19] [8] [6] have also

reported interesting results using surface curvature as the major shape statistics.

Methods Employing Volume Measure

Guéziec’s algorithm [12] collapsed edges into vertices if they pass a series of ge-

ometrical and topological tests. The tests were based on a local tolerance volume that

controlled the level of accuracy. The tolerance is not a global parameter but is vari-

able depending on the position on the surface. A tolerance volume was computed as

a sphere around each vertex and represented the accumulated error introduced by new

vertex creation during each simplification step.

Kreylos and Hamann [17] used a simulated annealing algorithm to generate multi-

resolution surface representations of a scattered data set. They used a volume error

metric to achieve optimal approximation of the original mesh.

Methods Employing Defined Functions or Metrics

Mesh Optimization [15] and Progressive Meshes [13] defined an energy function

to achieve good approximations of the original objects. It balanced several features

associated with an edge contraction operation. The latter paper employed a progressive



representation of a continuous sequence of meshes, which stored an arbitrary mesh as a

coarser one plus information on how to go back to the denser mesh.

Ronfard and Rossignac [21] reported a simplification algorithm based on region

merging which iteratively collapsed edges based on a measure of geometric deviation

from the the initial shape. Their approach produced a continuous level of detail approx-

imations.

Garland and Heckbert [9] [10] and Hoppe [14] used quadric error metrics for sim-

plification of surface meshes. Quadric error metric is quite related to the distance of a

vertex to the closest surface. They are used as a measure of the approximation error

during the simplification process. A valid pair of vertices is selected and removed based

on the length of the edge connecting them.

Methods Employing Built-up Constraints

Cohen et al.’s Simplification Envelopes [5] constructed an inner and an outer enve-

lope (offset surfaces) to constrained the generation of approximate surfaces. A global

error bound epsilon is used to control the shape of the simplified surface. They also

ensured that self-intersection did not occur as may be bound to happen when a concave

section of a surface is offset. Their algorithm also preserved sharp edges.

Methods Employing Transform and Parameterization

By taking advantage of the wavelet transform, Eck [7] extended an earlier multi-

resolution representation of subdivision surfaces to support arbitrary meshes in multi-

resolution form. Their approach uses a parameterization of the initial mesh over a sim-

ple domain.

In general, mesh simplification algorithms try to reduce the number of surface el-

ements by using a number of approaches (vertex removal, edge collapse, etc.) while

preserving surface properties (topology, curvature, etc.) using a variety of criteria (error

metrics, parameterization, constraints, etc.). Different variations also provide additional

features such as smooth level of detail transitions and progressive transmission. Not all

simplification algorithms include a measure of error and uncertainty introduced at each

step. Those that do usually give better results, particularly for meshes where sharp edges

or non-manifolds are present in the model.

2.2 Mesh Comparison

Accuracy, error, or uncertainty measurements play an important role in the evaluation

of multi-resolution representations for visualization use. The local error measurements

on polygonal meshes indicate the local resolution and determine the visual impression

of the numerical data. A number of researchers have reported their work on algorithmic

and quantitative approaches to attack this evaluation problem. To identify characteristic

features in the mesh, overall shape, topology, hole, sharp edge are usually used.

Cignoni et al. [4] presented a tool (Metro) for measuring error on meshes using

Hausdorff geometric distance as the major error measure. Multi-resolution models from

decimation method were compared and analyzed. Gerstner et al. [11] used the concept

of local error indicators to describe uncertainty and control the refinement process on



nested multi-resolution grids. This adaptive comparison of coarser and denser meshes

involved a number of measurements for geometric distance, angle, curvature, etc.

Many researchers have reported their work based on the surface curvature as the

primary shape indicator. In their work on shape decomposition, Falcidieno and Spag-

nuolo [8] classified surface patches as having strong or weak curvature. Lin and Perry

[19] applied mean curvature for surface description. Desbrun et al. [6] also used the

mean curvature in the construction of a curvature flow, and achieved smooth surfaces

by removing noisy features. Mean curvature was calculated as the divergence of the

normal vectors of the triangles incident at a vertex.

Similar to Metro [4], our work targeted towards mesh comparisons. We extend their

work on two fronts: an extensible set of metrics which currently includes different mea-

sures for geometric distances and different measures of curvatures; and an extensible

set of visual mappings of these metrics to highlight the differences associated around

each local region. We demonstrate this comparison system by assessing a number of

polygon mesh refinement, simplification, and compression algorithms.

3 COMPARISON METHODS & ERROR METRICS

Our comparison system allows two meshes to be compared at a time. The two meshes

may be simplifications from different algorithms, or different resolutions from the same

algorithm Several metrics may be computed between pairs of meshes. As the system

grow to accommodate different types of meshes, it can also grow to support domain or

application set of metrics particularly for data defined over the meshes. We describe the

set of metrics that is currently supported by our system.

3.1 Minimum Distance Metrics

It is natural to use geometric distances as an error measure to compare two meshes.

In this section, we describe several techniques in calculating error metrics involving

geometric distance.

The following notations are partially adopted from [4]. Given two arbitrary surfaces

S and S

0, assume they represent the same objects but with different sets of triangles

and are close to each other. Let d(p; p0) denote the Eu
lidean distance from point p to

point p0 in E3 space. Then the distance from a point p on S to S0 is defined as:

e(p; S

0

) = min

p

0

2S

0

d(p; p

0

) (1)

This definition of minimum distance can be used as error metric to measure how

close two meshes are to each other. For each vertex p on the base mesh, the closest

p

0 can be obtained by exact calculation and traversal through all triangles on the other

mesh. In practice, we can search locally to identify p0 to avoid redundant computation

by subdividing into uniform grids and registering triangles according to their bounding

boxes.

For each vertex p on the base mesh, the closest p0 can also be obtained by Monte

Carlo simulation. This is done by taking point samples to the closest triangular patch



on the other mesh and taking the minimum distance to p. The larger the sample space

the better is the approximation. This is good in stochastic theory but it takes a long

time if the sample space is large. Variations on these distance metrics are also possible.

Examples include the use of other norms aside from Euclidean measurements.

p’

p

qSurface S

Surface S’

Fig. 1. Distance measurement between two surfaces S and S0 in Euclidean 3D space.

3.2 Gaussian, Mean, and Edge Curvature Approximation

Either mean curvature or Gaussian curvature gives a good measure for the surface

shape. These measures can be formulated in the form of differential equation based

on a continuous surface function X = X(u; v). Gaussian curvature K is the product of

two principal curvatures �
1

and �
2

, i.e. K = �

1

� �

2

. Mean curvature H is the average

of �
1

and �
2

, i.e. H =

�

1

+�

2

2

. The mean and Gaussian curvatures are important quanti-

ties in computer vision, since they provide a common method for specifying basic types

of surface.

Gaussian Curvature

In a discrete domain, the polygonal surface meshes are not parameterized over u and

v, Thus, the curvature at a point on the surface has to be approximated. The curvature

calculation is usually done at a vertex point since there is no curvature on the face

of each polygon. We adopt a notation proposed by Falcidieno [8]. As illustrated in

Figure 2, the surface around the vertex O is unwrapped onto an imaginary average

plane. The angle deficit �� is calculated as:

�� = 2� �

X

i

�

i

(2)

The total area A of the adjacent triangles T
i

, for i = 1; 2; 3; :::

A =

X

i

A

i

and K =

���

A

(3)

where � is a constant 3.

The above equation gives a good approximation to the Gaussian curvature of the

surface at vertex O. When �� = 0, the Gaussian curvature approaches zero and the

surface is flat. When �� > 0, the surface is may either be convex or concave. When

�� < 0, the surface represents a saddle region around the vertex (Figure 3).

Mean Curvature
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Fig. 2. Approximating Gaussian curvature around vertex O. Right figure shows the surface un-

wrapped around vertex O onto an average plane. Size is small enough to obtain good approxima-

tion of continuous expression in differential geometry.
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Fig. 3. Vertex O is at a saddle region. Unwrapping around vertex O, starting with edge OA in a

counter-clockwise direction, will produce a negative angle deficit ��.

Curvatures K and H are the intrinsic properties of the surface. By definition, the

mean curvatureH is the divergence of the surface around the normal vector,H = r

*

n .

In case of planar regions, the surface normals of the polygons around a vertex are the

same, which results in zero curvature associated with that vertex. Differential geometry

defines the mean curvature normal H
*

n

=

rA

2A

, where A is the area of a small re-

gion around the point p(x; y; z) on the surface, and r is the derivative with respect to

the three coordinates. By this definition, the local area reaches minimum value on flat

surfaces and gives a zero mean curvature at those vertices.

For a surface mesh, a discrete formulation can be derived from the continuous form

of the mean curvature definition above. For details on the derivation, please refer to the

Appendix of [6]. We reproduce their discrete expression of the mean curvature normal

here:

�H

*

n

=

1

4A

X

j2N(i)

(
ot�

j

+ 
ot�

j

)

*

(x

j

� x

i

) (4)

where j is the jth element in the vertex X

i

’s adjacent polygon set N(i), (x
j

� x

i

)

indicates the edge e
ij

, �
j

and �
j

are the two angles in jth and (j�1)th element ofN(i)

opposite to the edge e
ij

respectively, A is the sum of the areas of element triangles in

N(i). For illustration, see the Figure 4(a).
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Fig. 4. (a) Approximating mean curvature around vertex X
i

, the size is small enough to obtain

good approximation of continuous expression in differential geometry; (b) approximating edge

curvature around vertex O.

To get good approximations of the curvature metrics above, especially for meshes

at different levels of detail, the size of the regions around the vertex should be infinites-

imally small, i.e. small enough to make approximation feasible. In practice, we define

a sphere with a radius set to a thousandth of the diagonal of the bounding box of the

entire mesh. This sphere defines a region of influence around a vertex.

Edge Curvature

The shape at any vertexO is determined by the incident edges to a great extent. Edge

curvature in this paper is defined as the average of the angles between two adjacent tri-

angles sharing an incident edgeOX
i

of vertexO. The edge curvature approximationE



as a shape measurement is illustrated in Figure 4(b). The right sketch in the Figure 4(b)

illustrates the convex condition; while the left sketch in the Figure 4(b) illustrates the

concave condition.
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where � is a small constant to keep the expression from going to infinity. In our imple-

mentation, � is set to some constant between 0:1 and 1:0.

3.3 Surface Area and Interior Volume Measurement

Total surface area and interior volume V are good metrics that account for the global

errors of a multiresolution surface mesh. The surface area is calculated by summing up

the area of all the triangles on the mesh. For a set of triangles on mesh, the geometric

centerC is defined as the average of all the vertex positions. The interior volume of each

object is the sum of each tetrahedral volume formed by extending each triangle to the

geometric center. This expression is a good approximation for closed surface meshes.

It is not an accurate measure for the case of open surface meshes. But we can still use

it as an estimate of volume since we are applying the same definition to the two surface

meshes under comparison.

V =

1

3

X

i

(

*

n

i

�

*

[X

i

� C℄)A

i

(6)



where i is the index of triangle elements, A
i

is the area for the ith triangle, X
i

any

vertex on that triangle,
*

n

i

the normal vector of that triangle.

3.4 Comparison Point Pairs and Differences

After calculating a metric for a mesh, it is often necessary to compare the metric cal-

culation for one mesh versus another mesh. To do this, we need to know which pair of

points from the two meshes to compare.

For minimum distance metric, the comparison point pair is chosen at the time the

minimum distance is identified. The difference is taken based on the base mesh. We

obtain the coordinates of the closest point on the other mesh when it is decided that it

leads to minimum Euclidean distance to the pivot vertex. The pivot vertex is defined

as the vertex under operation on the base mesh. The directions of the normal at the

comparison point pair are also checked to make sure the surfaces are not facing opposite

directions.

A similar strategy can be used when comparing curvature metrics. When we record

the other point of the comparison pair, we also record the triangle on which it is located.

The curvature measurement at this point is interpolated as the average of the three cor-

ners of the triangle weighted by their barycentric coordinates. Since the approximation

of curvature metrics are based on the small sphere of influence to approximate the

differential geometry derivation, the propagation of the curvature measurement at the

vertices should be limited by the size of the radius of this sphere. That is, we actually

modify the weights of the barycentric coordinates such that if a vertex lies outside of

the sphere centered at the closest point, its weight is set to zero.

For each comparison metric, the differences are taken by subtracting the two mea-

surements at the comparison point pair. Either the absolute or signed differences may

be taken. These differences are stored and associated with each pivot vertex, to be used

for visualization.

4 VISUALIZATION APPROACHES

By using the different metrics described in the previous section, one can obtain a mea-

sure of the local differences between two meshes. These metrics can then be presented

visually to highlight the extent and the degree to which the two meshes differ. Pang et

al. [20] presented a number of techniques such as glyphs, textures, transparency, an-

imations, perturbations, etc. to present similar information on surface attributes. We

describe those that are used in our comparison system.

Side-By-Side Visualization and Overlay

These are straight forward visualization methods suitable for visualizing significant

differences. Side-by-side presentation of two meshes can be used to see the surface

degradation (particularly, the silhouettes) if one compares an original mesh against a

coarsely simplified mesh. It is also useful when a wireframe rendering is used to show

the triangulation patterns. However, this technique is not very useful when the two

meshes are of comparable resolution or if the mesh resolution is fairly high.



Overlaying or super-imposing the two surfaces and rendering each one with a differ-

ent color can also be used to see the nuances of bumps and dips of one surface relative

to the other. Care must be taken when registering the two meshes in an overlay as the

occlusion of parts of one surface with respect to the other is very sensitive to how this

is done. The geometric center of each mesh is calculated separately and is translated to

the origin. In the next step, objects are rendered one by one using the polygon renderer

with respect to the same center point.

Another method of presenting differences is by mapping the metrics relative to one

of the surfaces. That is, the geometry of one surface is displayed, while the difference

with the second surface is displayed as an attribute of the first surface. Here, we use

a number of techniques including: transparency, pseudo-coloring, surface texture and

perturbation, error glyphs, animation, etc.

Pseudo-coloring

Differences may be a signed quantity or a positive quantity (if the absolute differ-

ence is taken). An appropriate color-map may then be chosen to linearly map the range

of difference values to the color values. For unsigned differences, a “rainbow” map

ranging from blue-to-green-to-red or a gray shade map may be used to map low-to-high

values respectively. Note that while the rainbow map does not produce a perceptually

linear mapping [2], it is included since it is widely used in the community. For signed

differences, a white-to-black-to-white gray shade map or a red-to-black-to-green map

may be used to map negative, zero, and positive differences respectively.

The surface may be rendered in wireframe, flat, or smooth shading. Histograms of

data distribution are also rendered according to the color map chosen.

Box-Glyph and Animation

To highlight the uncertainty in the local region interactively, glyph representation

and animation methods may be used. The length of the box glyph sticking out of the

mesh surface is mapped proportionately to the difference metric. The glyph size can be

adjusted by users, and glyphs can be filtered to reveal the location of high difference

or difference with specific value. The high pass filter prevents low value glyphs from

showing up. The low pass filter prevents high value glyphs from showing up. This

setting of thresholds can be controlled from the graphical user interface. Animation

may be used in conjunction to show a ranked animation according to the magnitude of

the difference.

In the system we are building, two side by side windows are used to render the

two meshes under comparison. In a third window, the difference image is visualized

and may be manipulated in a synchronized fashion as the other windows. Figure 5 is

a screen-shot of this system. Figure 6 shows additional examples of difference images

using a variety of presentation techniques.

5 EXPERIMENTAL RESULTS

We implemented our surface mesh comparison visualization system on an SGI Octane

workstation with a single 195mhz R10000 cpu and 128mb RAM running IRIX 6.5.



Fig. 5. Graphical user interface for our comparison and visualization system: left two windows

show two multi-resolution images, right window shows the difference image. The two images on

the left may be colored with metrics about the individual meshes, e.g. curvature at each vertex.

There are several options for displaying the difference of those metrics on the right as illustrated

in Figure 6.

Fig. 6. Some visual mapping options for difference image. From left to right: overlay, rainbow

mapping, white-black-white pseudo-coloring, glyph (hi-pass filter), glyph (low-pass filter).

Our visualization system accepts data sets in a variety of data formats, such as Inventor,

VRML, ply, etc.

5.1 Comparing Different Resolution Meshes

The first example is the application of our visualization system to compare multi-

resolution Cow data sets distributed with SGI’s Powerflip demo. The multi-resolution

data sets generated vary in resolution ranging from 5803 to 200 triangle elements re-

spectively.

Figures 7 to 10 show comparison visualization results on two Cow meshes: 5599

triangles with 2801 vertices and 999 triangles with 502 vertices. The coarser and denser

mesh images give indications on the original shape statistics before the difference is

taken. The difference images were rendered on the top of the denser mesh. Note that

the error measurements may vary significantly from region to region. In these 4 images,

we use the rainbow color-map to pseudo-color the unsigned differences of the metric

calculations. These color-maps are dynamically scaled to the range of the data. So that

blue color indicates low values while red color indicates high values for each data set.

One can easily observe that regions on the cow’s head, specially near the ears, are where

the different metrics reached some relatively higher values. Sharp and joint regions are

easily recognized due to large differences. The differences in other regions are not as

prevalent as in the head region.

In Figure 7, we compare the difference between the two meshes using the minimum

distance error metric. It is fairly clear that the high difference regions are located around

the sharp edges such as the horn, the ear, etc. In Figure 8, we compare the difference



by Gaussian curvature error metric. This error metric shows that high differences are

concentrated on the cow’s face area including the mouth, the horn, the ear, and some

other parts like the legs and tail are also identified as relatively high difference regions.

In Figure 9, we compare the difference using the mean curvature error metric. Again,

it shows two clear red spots located on the cow’s head indicating some local maxima

around the sharp edges. In Figure 10, we compare the difference using the edge curva-

ture error metric. This color-mapped image shows the high differences show up on the

regions where the surface undergoes big shape changes such as saddle regions, as well

as the head area.

Fig. 7. Comparison images of multiresolution Cow object by comparing minimum distance. From

left to right: coarse mesh, dense mesh, difference image using the rainbow colormap to locate the

regions of high error.

Fig. 8. Comparison images of multiresolution Cow object by comparing gaussian curvature. Left

and middle images are pseudo-colored using the gaussian curvature. The image on the right is

colormapped to the difference between the two sets of gaussian curvature measurements.

The minimum distance metric is useful in identifying regions that either got pro-

truded or depressed on the surface as well as general position shifts of vertices on the

mesh. All three curvature metrics are capable of identifying differences produced on the

sharp edges and joint parts of some complex multi-resolution objects. Because Gaussian

curvature is the product of two principal curvatures, it tends to highlight the curvatures

better. On the other hand, if one of the principal curvature is low and the other is high,



Fig. 9. Comparison images of multiresolution Cow object by comparing mean curvature. Left

and middle images are pseudo-colored using the mean curvature. The image on the right is col-

ormapped to the difference between the two sets of mean curvature measurements.

Fig. 10. Comparison images of multiresolution Cow object by comparing edge curvature. Left

and middle images are pseudo-colored using the edge curvature. The image on the right is col-

ormapped to the difference between the two sets of edge curvature measurements.



Algorithm MinimumDist GaussianCurv MeanCurv EdgeCurv

average max average max average max average max

Jade 0.0288 0.388 5.911 25.09 6.31e+7 MAX 0.612 9.663

Envelope 0.0327 0.454 2.829 15.49 1.57e+8 MAX 0.202 2.336

Quadric 0.0143 0.140 2.809 15.84 9.47e+7 MAX 0.179 0.713

Table 1. This table shows the average and maximum values of each shape metric for three dif-

ferent simplification algorithms. About 3% of the values exceeded a threshold (3.4e+10) used to

flag entries that went to infinity.

the Gaussian curvature may appear to be relatively low e.g. jaw region of left image of

Figure 8.

5.2 Comparing Meshes from Different Algorithms

In this study (see Figures 11 to 14), we compare the meshes from three different mesh

simplification algorithms. Since different algorithms have different ways of specifying

the “resolution” of a simplified mesh, we tried to compare the meshes that contained

more or less the same number of triangles. The original Skeletal Foot data set comes

from the Avalon archive. It contains 4204 polygons and 2154 vertices. From this data

set, we obtained three lower resolution meshes using the following algorithms: Jade [3],

Simplification Envelope [5], and Quadric Error Metrics [9]. These three surface meshes

contain 1304 triangles with 704 vertices, 1314 triangles with 709 vertices, and 1310

triangles with 707 vertices respectively. These images use the rainbow color-map with

dynamic scaling so that blue color indicates 0 while red color indicates the maximum

value for that metric, which can be found in Table 1. In Figures 11 to 14, the difference

images were rendered over the denser original mesh.

Algorithms Surface Area Change % Interior Volume Change %

Original 107.3 – 18.66 –

Jade 106.4 -0.85 17.50 -6.21

Envelope 108.9 1.48 17.26 -7.50

Quadric 105.9 -1.32 18.34 -1.71

Table 2. This table shows two additional global shape measures (surface area and interior vol-

ume) associated with mesh comparison of the multi-resolution Skeletal Foot models. Due to the

distributed structure, the geometric center may be located outside of the body of the model. Be-

cause of the way the interior volume is calculated, these numerical results only give an estimation

of the global volume change.

Quadric Error Metrics exhibit some advantages over Jade and Simplification En-

velope in terms of the average and maximum values of the different metrics. In Table



(a) (b) (c)

Fig. 11. Difference images of the Skeletal Foot object using the minimum distance error metric.

Comparison between the original and simplified meshes are displayed for (a) Jade, (b) Simplifi-

cation Envelope, and (c) Quadric Error Metrics.

(a) (b) (c)

Fig. 12. Difference images of the Skeletal Foot object using the gaussian curvature error metric.

Comparison between the original and simplified meshes are displayed for (a) Jade, (b) Simplifi-

cation Envelope, and (c) Quadric Error Metrics.

(a) (b) (c)

Fig. 13. Difference images of the Skeletal Foot object using the mean curvature error metric.

Comparison between the original and simplified meshes are displayed for (a) Jade, (b) Simplifi-

cation Envelope, and (c) Quadric Error Metrics.

(a) (b) (c)

Fig. 14. Difference images of the Skeletal Foot object using the edge curvature error metric.

Comparison between the original and simplified meshes are displayed for (a) Jade, (b) Simplifi-

cation Envelope, and (c) Quadric Error Metrics.



1, the lower resolution surface generated by the Quadric Error Metrics algorithm is at

least 50% closer to the original surface, and is at least 10% better using the edge cur-

vature metric. It is not worse using the Gaussian curvature metric and mean curvature

metric. In Table 2, it shows a reasonable change in volume which out performs the other

two simplification algorithms.

In Figures 11, the distance metric indicates that Quadric Error Metrics does fairly

well on flat and smooth regions while Jade and Simplification Envelope show large

difference in flat regions. Looking at the 3 curvature metrics (Figures 12, 13, and 14), it

is again apparent that remarkable errors appear on sharp edges and joint parts, such as

the toes.

It seems like the Quadric Error Metrics approach is a good choice in reducing dis-

tance errors, while maintaining comparable curvature errors as the other two simplifi-

cation methods, at least for this data set and resolution. Before sweeping blanket state-

ments can be made about how good a particular simplification algorithm is relative to

another, more tests on different types of data sets, different resolution meshes, as well

as some importance associated with the different metrics must be made. The tools pre-

sented in this paper will facilitate such a task. Evaluations can be carried out using both

numerical and visual results of this comparison tool. If the user wants to check the gen-

eral changes of the objects, minimum distance metric serves the purpose. It tells the

user the location and magnitude of displacement between the meshes. If the user cares

about the local shape change of the surface under examination, the user can apply the

other curvature error metrics to see the fine structure in each local region.

5.3 Case Study: Isosurface Simplification

In this case study (see Figures 15 to 18), we use the mesh comparison tools to analyze

isosurfaces. Isosurfaces is one of the most popular visualization tools. For a modest data

set, it is not uncommon to find isosurfaces with a very large number of triangles. Hence,

they are good candidates for mesh simplification.

We look at an isosurface generated from [24] which contains 39762 polygons and

19964 vertices. We refer to this data set as the Wind Tunnel Isosurface. From this data

set, we obtained two lower resolution meshes using the following algorithms: Jade [3],

and Quadric Error Metrics [9]. These two reduced surface meshes contain 5929 trian-

gles with 3002 vertices, 5939 triangles with 3010 vertices respectively. These compari-

son images use the rainbow color-map with dynamic scaling so that blue color indicates

0 while red color indicates the maximum value for that metric, which can be found in

Table 3.

From these images (Figures 15 to 18), we see that Quadric Error algorithm consis-

tently performed better than Jade e.g. we see that errors on top of the reduced surface

mesh generated by Quadric Error Metrics are more evenly distributed; the amount of

redness in the images seem to be less also. The numerical results in Table 3 also show

that the Quadric Error Metric algorithm is consistently better than Jade. So, at least for

this isosurface and this level of mesh resolution, we can conclude that Quadric Error is

better. However, we again caution readers that more tests need to be done to determine

if this is true in general for different data sets, and different mesh resolutions.



Algorithm MinimumDist GaussianCurv MeanCurv EdgeCurv

average max average max average max average max

Jade 0.00028 0.00939 6.479 5390.3 1.18e+9 MAX 0.328 253.1

Quadric 0.00017 0.00448 4.234 48.29 1.12e+8 MAX 0.135 35.57

Table 3. This table shows the average and maximum values of each error metric by comparing

reduced meshes, using simplification algorithms: Jade, and Quadric Error Metrics, to the original

data set. The high limit MAX is set to 3.4e+10 to catch values that went to infinity.

(a) (b)

Fig. 15. Difference images of multiresolution Wind Tunnel Isosurface by comparing minimum

distance error metric. Original mesh is the same, simplified meshes by algorithms: (a) Jade, and

(b) Quadric Error Metrics.

(a) (b)

Fig. 16. Difference images of multiresolution Wind Tunnel Isosurface by comparing gaussian

curvature error metric. Original mesh is the same, simplified meshes by algorithms: (a) Jade, and

(b) Quadric Error Metrics.

(a) (b)

Fig. 17. Difference images of multiresolution Wind Tunnel Isosurface by comparing mean cur-

vature error metric. Original mesh is the same, simplified meshes by algorithms: (a) Jade, and

(b) Quadric Error Metrics.



(a) (b)

Fig. 18. Difference images of multiresolution Wind Tunnel Isosurface by comparing edge error

metric. Original mesh is the same, simplified meshes by algorithms: (a) Jade, and (b) Quadric

Error Metrics.

6 SUMMARY AND CONCLUSION

We have presented a surface mesh comparison and visualization system. It allows two

different meshes to be compared against each other using a variety of metrics and visual

mappings. It is an extensible system which allows for a growing number of mesh for-

mats to be supported, a growing number of metrics for analyzing the two meshes, and

a growing number of visual mappings to better present the analyses. The two meshes

to be compared may be different resolutions from the same simplification algorithm, or

they could be from two different algorithms. The current constraint is that the input data

sets be made up of triangular surface meshes.

There are several areas to be explored in the future. Finding closest points and sur-

faces is an expensive calculation. Analytical methods for finding comparison point pairs

involve the use of linear interpolation and the computation of intersection points – either

the line-surface intersection or the surface-surface intersection. Therefore, improving

the search algorithms to achieve faster metric calculations and better storage manage-

ment of results. For example, the use of a space-partitioning scheme may speed up the

search for comparison points pairs. Another area is to extend this work to support vol-

ume data set, i.e. to compare a number of tetrahedral simplification algorithms such as

simplification of tetrahedral meshes [26] and progressive tetrahedralizations [25].

7 ACKNOWLEDGEMENTS

We would like to thank A. Ciampalini, P. Cignoni, R. Scopigno, Jonathan Cohen,

Michael Garland, Oliver Staadt, Markus Gross, Hughes Hoppe, Issac Trotts, Bernd

Hamann, and their colleagues for sharing their mesh simplification code and data. We

would also like to thank members of the Advanced Visualization and Interactive Sys-

tems laboratory at Santa Cruz for their feedback and suggestions. This project is sup-

ported in part by LLNL Agreement No. B347879 under DOE Contract No. W-7405-

ENG-48, DARPA grant N66001-97-8900, NASA grant NCC2-5281, and NSF NPACI

ACI-9619020.



References

[1] C. Bajaj and D. R. Schikore. Error-bounded reduction of triangle meshes with

multivariate data. In SPIE Vol. 2656 Visual Data Exploration and Analysis III,

pages 34–45, February 1996.

[2] L.D. Bergman, B.E. Rogowitz, and L.A. Treinish. A rule-based tool for assist-

ing colormap selection. In Proceedings of Visualization 95, pages 118–125, 444.

IEEE, 1995.

[3] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution decima-

tion based on global error. The Visual Computer, 13(5):228–246, 1997.

[4] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simplified

surfaces. Computer Graphics Forum, 17(2):167–174, June 1998.

[5] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber,

Pankaj Agarwal, Frederick P. Brooks Jr., and William Wright. Simplification en-

velopes. In Proceedings SIGGRAPH 96, pages 119–128. Addison Wesley, 1996.

[6] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Implicit fairing of
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