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Abstract

Muchof theresearchin scientificvisualizationhasfocusedoncom-
pletesetsof griddeddata.Thispaperpresentsour experiencedeal-
ing with griddeddatasetswith largenumberof missingor invalid
data,andsomeof our experimentsin addressingtheshortcomings
of standardoff-the-shelfvisualizationalgorithms.In particular, we
discusstheoptionsin modifyingknown algorithmsto adjustto the
specificsof sparsedatasets,andprovideanew techniqueto smooth
out the side-effects of the operations. We apply our findings to
dataacquiredfrom NEXRAD (NEXt generationRADars)weather
radars,whichusuallyhavenomorethan3 to 4 percentof all possi-
blecell pointsfilled.
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1 INTRODUCTION

In atmosphericsciences,researchesare often facing the problem
of visualizinggriddeddatasetsthat are incomplete: eithera grid
of data is extrapolatedfrom a set of scattereddataobservations
and thereis insufficient supportto validatea datapoint, or there
is simply no observationfor thatspecificregion. Observedmeteo-
rologicaldataaremostlypoint (0 dimension)measurementsmade
atsparselydistributedweatherstations.They mayalsobe1 dimen-
sionalmeasurementssuchasthoseobtaineda weatherballoonor
a verticalwind profiler which measureswind velocitiesat various
heights. They may alsobe 2 dimensionalsuchasthoseobtained
from satelliteimageryor derivedfrom radialvelocitiesfrom a pair
of radars(e.g. CODAR). More recently, volumetricweathermea-
surementsareavailablethroughtheNEXRAD radarwhich makes
a seriesof conicalscans. This paperis a casestudy in visualiz-
ing 3D volumetricNEXRAD datawhich is characterizedby alarge
proportionof missingor invalid datapoints.

2 BACKGROUND

NEXRAD, alsoknown underits official nameWSR-88Dis a me-
teorologicalinstrumentgeneratingdozensof datatypes,including
reflectivity, storm total precipitationand wind radial velocity. It
doessoby processingtheradarsignalbouncedoff theparticlesin
the atmosphere,be it rain drops,hail, or ice crystals. Occasion-
ally, NEXRAD may reportnon-weatherrelatedphenomena,such
assmokeplumesfrom firesandlargeflocksof birds. It is adoppler
radarandusesthe ”dopplereffect” to determinethedirectionand
velocity of the particlesalonga radial direction. On a clearday,
NEXRAD canretrieve informationasfar out as143miles. As op-
posedto theconventionalweatherradarwhich makesonecircular
sweep,NEXRAD makesup to 14conicalsweepswith varyingele-
vationanglesfrom thehorizon,oftenrangingfrom 0.5 to 19.5de-
greesabove thehorizon. Thesweeppattern,includinggrid points

whereavailable, is illustratedin Figure 1. The most interesting
featureof NEXRAD is that it measuresthe weatherwithin its lo-
cal volumeof space,producinga curvilinearvolumescanfrom the
conicalsweeps.NEXRAD is mostnotedfor its usefulnessin early
stormdetectionandrainfall estimates.

Currently, the National WeatherService has 160 WSR-88D
radarsemployed nationwide. For this casestudy, we use data
from the SanFranciscoBay Area NEXRAD, stationedatop Mt.
Umunhum.

Figure1: NEXRAD grid pattern

Our primary interestwasdeveloping3D images,sincethe cur-
rentvisualizationtechniquesfor NEXRAD simply discardthe3D
natureof thedatasetandprovide2D plotsof thelowestlayerof the
grid. Themaindifficulty arosefrom thefactthatmostvisualization
techniquesthat aredesignedfor griddeddataassumethat the un-
derlyingdatasetis complete.That is, it containsa valid datavalue
at eachgrid point. When incomplete,griddeddatasetsare often
filled with pre-definedvaluesoutsidethevalid datarange[5, 2, 1]
for exampleby NaN, the IEEE representationfor Not-a-Number.
How incomplete,invalid, or missingvaluesaretreatedvariesfrom
implementationto implementation,andfrom applicationto appli-
cation. Often times,the visualizationprogramwill leave holesin
thevisualizationwherethedatais missing.Othertimes,they may
explicitly be flaggedandshown togetherwith the restof the data.
Dependingon the type of data,this mayor maynot be desirable.
Accordingto [9]: “Empty spaces[must] signify absenceof phe-
nomenaandnot missingdata.” Becauseof the natureof radarre-
turnsfrom NEXRAD, this is oftenthecase– thereis not sufficient
phenomena(e.g. precipitation,air particles)at placeswherethere
areno measurementsavailable. As such,NEXRAD datarequires
specialhandlingparticularlywhenit comesto interpolatingneigh-
boringgrid pointswith missingdataasis oftenthecaseduringare-
samplingoperation.Thetreatmentis similarto thatof interpolating
valid measurementsfrom a sparsenumberof point measurements



from scatteredweatherstations.For example,Panget al. [7] ex-
plored� theinclusionof dataqualityor uncertaintyparametersto the
differentmeasurementswhenattemptingto resampleto a full grid
usingavarietyof globalinterpolationandapproximationmethods.

3 VISUALIZATION ISSUES

One of the primary use of NEXRAD data is identifying storm
clouds and tracking them over time. Figure 2 shows a sample
NEXRAD datasetfor a particularinstancein time. Eachcolored
point representa locationin the vicinity of the radarwith a valid
reading.Thevalueateachlocationis pseudo-coloredsuchthatlow
valuesarebluish, andhigh valuesarereddish. It is pretty appar-
ent that thereis a significantamountof dark regionswith no data.
Most standardvisualizationpackageseitherfails or give incorrect
visualizationsof thisdataset.

In this section,we explore several waysof extractingandpre-
sentingrelevant NEXRAD information. In this exercise,we as-
sumethat thevalueof 23.5representssomephysicallysignificant
phenomenonsuchaswaterparticlesin theclouds.Hence,thefea-
tureof interestis to locatetheseraincell clusters.

Figure2: Pseudo-coloredpoint cloudof NEXRAD data

3.1 Point Cloud

A naturalstartwith a scattereddatasetis to simply draw a colored
point for eachdatapoint,alsoknown asapointcloud.Theimagein
Figure2 is exaggeratedin theverticaldirectionandquickly points
out the conicalnatureof the grid. It is alsoeasyto seethat most
of the dataarefound in the lower layersof the atmosphere,with
densityquickly recedingin the higher levels. To find the regions
wherethereis rain (i.e. valuesabove 23.5),we generateanother
pointcloudrepresentationfor thosevalues.This is shown in Figure
3 below, alongwith the underlyingterrain: the greaterSanFran-
ciscoBay Area. Thewhite pointsareat 23.5moving towardsred
asthevaluesincrease.Wecanobserve thatthelargestcloudcluster
is formedabove theentranceto thebay, in theupper-left partof the
image.

3.2 Delaunay Triangulation

While thepoint cloudis acheapandsimplewayof identifying im-
portantvaluesin thedataset,thepresentationis lessthanidealand
tendto getconfusedbecauseof poordepthcues,speciallyin astatic
view. Hence,the next stepin the processmight be to try andex-
tractasurfacefrom thesepointsof interest.Theproblemreducesto
oneof creatinga setof trianglesconnectingpointsthatarenatural
neighbors.This taskis accomplishedby usingDelaunaytriangula-
tion onthedesiredsubsetof points– with valuesrangingfrom 23.4
to 23.6. We alsomodify the algorithmslightly to eliminatelarge
trianglesthatmaycropup thatconnectdifferentclusterstogether.

Figure3: Pseudo-coloredpoint cloudof NEXRAD datarepresent-
ing “rain” (valueabove23.5)

Theresultof this operationcanbeseenin Figure4. Here,we start
to seemorecoherentstructuresof whatmightbecloudformations.
This Delaunaytriangulationandthresholdingprocessmaybe fur-
therimprovedby addingaphysicallymeaningfulsetof constraints
thatspecifyboundaryconditionsandsurfacetensioncoefficients.

Figure4: Delaunaytriangulationof datapointsbetween23.4and
23.6

3.3 Interpolation

Interpolationis a popularoption employed to obtainunknown or
missingvaluesfrom known ones. A wide variety of algorithms
exist, for example,Shepard’s [10] inversedistanceweightingfunc-
tions,Hardy’s radialbasismulti-quadrics[4], andthin-platesplines
[3] to mentiona few. Onemustbecarefulwhenselectingtheinter-
polationmethod,asmostof themdo not provide any meansof es-
timatingtheinterpolationerror. Thosethatdo,suchaskriging [6],
arecomputationallyexpensive anddo not scalewell with number
of datapoints.Many researchers,e.g. [13, 7], have hadto grapple
with the issuesarisingfrom inadequacy anduncertaintyin imple-
mentinginterpolationmethods,causedby the lack of constraints
on theoutputdata.An exampleof suchside-effectscanbeseenin
Figure5. Here,thesamedatasetasseenpreviously in Figure2 was
resampledto a 40x40x20grid usingShepard’s method. We then
generatedisosurfacesusinga thresholdof 23.5. Theresultingiso-
surfaceshavea layeredlook asif thevolumeof thecloudsincrease
at different layers. This problemsis not a featureof the databut
ratheran artifact from the interpolationalgorithm. UsingHardy’s
multi-quadricsalsohasa major disadvantagebecauseit canpro-
duceinterpolatedvaluesoutsidetheoriginaldatarange.

Findinga reliableinterpolationscheme,especiallyfor unevenly
distributeddatais still a greatchallenge.Furthermore,for many



Figure5: UndesirableartifactswhenusingShepard’s interpolation

environmentaldatait meansgoingfrom a smallsetof trustworthy
informationto a largesetof untrustworthy information.In thecase
of NEXRAD, wheremissingdatasignifiesa lack of atmospheric
phenomena,it wouldbemeaninglessto attemptandproduceavalue
at all cost.

3.4 Isosurface

Sothen,why not simply replacethemissingdatawith a valuethat
is outsidethe valid range(e.g. NaN) andproceedwith standard
algorithms? Contourlines in 2D or isosurfacesin 3D canbe er-
roneouslyformedwherenonearemeantto exist. In general,false
contourswill show aroundtheclustersof valid points,thusgiving
thedatasetanartificial “layer” whichinfluencesandwill beseenon
mostthresholdinglevels.
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Figure6: Incorrectcontourswhenarbitrarynumbersareused

Figure6 shows theproblemsencounteredwhenuserschooseto
arbitrarily fill the datasetwith datathat is outsidethe valid range.
In this illustration, we have chosen99.99and-99.99to represent
“invalid” numbers,andgave an exampleof iso-linesat threshold
value2. As canbe seenfrom this example,dueto linear interpo-
lationalongthecell edges,incorrectcontouredgesareproducedin
cellscontaininginvalid points.Volumevisualizations,suchasiso-
surfacinganddirectvolumerenderingwill suffer aswell, unlessthe
algorithmsaretransformedto explicitly ignoreinvalid datapoints
duringinterpolationprocedures.In addition,algorithmsusinggra-
dientinformationto calculatethesurfacenormalsmustbeadjusted
to usecentral,forwardor backwarddifferences,dependingonwhat
configurationof datapointsareavailable for the cell. Perhaps,a
betterapproachis to ignorecells with missingdatapoints. This
approachis presentedbelow.

3.5 Modified Normals

Fortunately, nowadaysmany visualizationprogramsareableto ig-
norethe “missing” grid pointsandproducean imagefor only the

partof thegrid thatyield completecells. An exampleproducedby
VTK [8] canbe seenin Figure7. Unfortunately, whenthereare
large gaps,andthe datais of high frequency, suchas in the case
with NEXRAD, theisosurfacesappeargrainy andspiky.

Figure7: Isosurfaceat23.5threshold

We have developeda methodto smoothout someof therough-
nessseenin an isosurfacecreatedfrom sparsegriddeddata. The
first stepis implementedusinga first-orderneighborhoodsmooth-
ing algorithmsimilar to theoneseenin [11]. We usethegradient
informationof the neighborpoints to adjustthe surfacenormals.
Out of the6 neighborpoints,eachvalid oneadds10 percentof its
value to the neighbor. The idea is to exploit the natureof atmo-
sphericdataandpropagatetheneighboringinformationamongthe
cells. In essencewe arecompensatingfor a lack of informationby
passinginformationaround. Anotherway of thinking aboutit is
that we areusinga low-passfilter to smooththe signal. Figure8
shows thevisualeffectsof smoothingthesurfacenormals.

Withoutsmoothing With smoothing

Figure8: Effectsof modifyingsurfacenormals

3.6 Modified Isosurface

In additionto modifying thesurfacenormals,we take theprevious
methoda stepfurther andsmoothboth the point locationandthe
surfacenormalsof theisosurfacetriangles.

Thismethodworksasfollows:

� Calculatethe gradientat eachvalid grid point, using either
central,forwardor backwarddifferences

� Updatethe gradientat eachvalid grid point by addinginflu-
encesfrom thevalid neighbors

� Repositioneachvalid grid point in thedirectionof thegradi-
entvector

� Createisosurfaceusingstandardtechniques



Imagesof an isosurfacedetailbeforeandafter themodification
areseen� in Figure9 below. Our resultsshow thatalthoughremark-
ableeffectsarenot likely, this methoddoessmoothout the sharp
edgesto bringout thecloud-like natureof thedataset.

Originalgeometry Modifiedgeometry

Figure9: Effectsof modifyinggeometryandsurfacenormals

3.7 Smoothed Isosurface

Finally, the mostsuccessfulvisualizationwasproducedwhenwe
usedaTaubin’s [12] smoothingalgorithmthatfunctionsontheiso-
surfacegeometryby balancingout thebumpsandvalleys. This is
a non-shrinkingvariantof the Gaussiansmoothingalgorithmthat
movesverticesof the isosurfacegeometryinwardsandoutwards,
in alternatingsteps.The imagein Figure10 wascreatedafter 20
iterationsof thealgorithm.

Figure10: Geometricallysmoothedisosurface

4 CONCLUSIONS

Unevenlysampleddataposeacommonproblemfor scientistsneed-
ing efficient and appropriatevisualizations. We have presented
someof thechallengesinherentin handlingsparsegriddeddataand
shown somecommonmethodsin visualizingsuchdatasets.Fur-
thermore,we have presenteda measurefor improving the isosur-
facesproducedfrom griddeddatasetswith a largenumberof miss-
ing values.In thefuture,we would like expandthedomainof our
researchinto otherphysicalsciencesandexperimentwith avariety
of gradientfilters.
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