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Abstract

Much of theresearclin scientificvisualizationhasfocusedon com-
pletesetsof griddeddata. This papemresent®ur experiencedeal-
ing with griddeddatasetswith large numberof missingor invalid
data,andsomeof our experimentsn addressinghe shortcomings
of standardff-the-shelfvisualizationalgorithms.In particular we
discusghe optionsin modifying known algorithmsto adjustto the
specificsof sparsedatasetsandprovide anew techniqueto smooth
out the side-efects of the operations. We apply our findings to
dataacquiredrom NEXRAD (NEXt generatiorRADars)weather
radarswhich usuallyhave no morethan3 to 4 percenbf all possi-
ble cell pointsfilled.
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1 INTRODUCTION

In atmosphericsciencesresearcheare often facing the problem
of visualizing griddeddatasetghat are incomplete: eithera grid

of datais extrapolatedfrom a setof scattereddataobserations
andthereis insuficient supportto validatea datapoint, or there
is simply no obsenration for thatspecificregion. Obsered meteo-
rologicaldataare mostly point (O dimension)measurement®ade
atsparselydistributedweatheistations.They mayalsobe 1 dimen-
sionalmeasurementsuchasthoseobtaineda weatherballoonor

a verticalwind profiler which measuresvind velocitiesat various
heights. They may alsobe 2 dimensionalsuchasthoseobtained
from satelliteimageryor derived from radial velocitiesfrom a pair
of radars(e.g. CODAR). More recently volumetricweathemea-
surementsre availablethroughthe NEXRAD radarwhich males
a seriesof conicalscans. This paperis a casestudyin visualiz-
ing 3D volumetricNEXRAD datawhichis characterizetly alarge
proportionof missingor invalid datapoints.

2 BACKGROUND

NEXRAD, alsoknown underits official nameWSR-88Dis a me-
teorologicalinstrumentgeneratinglozensof datatypes,including
reflectvity, stormtotal precipitationand wind radial velocity. It
doesso by processinghe radarsignalbouncedff the particlesin
the atmospherebe it rain drops, hail, or ice crystals. Occasion-
ally, NEXRAD may reportnon-weatherelatedphenomenasuch
assmole plumesfrom firesandlargeflocksof birds. It is adoppler
radarandusesthe "doppler effect” to determinethe directionand
velocity of the particlesalonga radial direction. On a clearday
NEXRAD canretrieve informationasfar outas143miles. As op-
posedto the conventionalweatheradarwhich makesonecircular
sweep NEXRAD makesupto 14 conicalsweepswith varyingele-
vation anglesfrom the horizon,oftenrangingfrom 0.5to 19.5de-
greesabove the horizon. The sweeppattern,including grid points

whereavailable, is illustratedin Figure 1. The mostinteresting
featureof NEXRAD is thatit measureshe weatherwithin its lo-

cal volumeof spaceproducinga curvilinearvolumescanfrom the
conicalsweepsNEXRAD is mostnotedfor its usefulnesén early
stormdetectionandrainfall estimates.

Currently the National Weather Service has 160 WSR-88D
radarsemplg/ed nationwide. For this casestudy we use data
from the SanFranciscoBay Area NEXRAD, stationedatop Mt.
Umunhum.
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Figurel: NEXRAD grid pattern

Our primary interestwas developing 3D images sincethe cur
rentvisualizationtechniquedor NEXRAD simply discardthe 3D
natureof thedatasetndprovide 2D plotsof thelowestlayerof the
grid. Themaindifficulty arosefrom thefactthatmostvisualization
techniqueghat are designedor griddeddataassumehatthe un-
derlyingdatasets complete.Thatis, it containsa valid datavalue
at eachgrid point. Whenincomplete,gridded datasetsare often
filled with pre-definedraluesoutsidethe valid datarange[5, 2, 1]
for exampleby NaN, the IEEE representatiofor Not-a-Number
How incompletejnvalid, or missingvaluesaretreatedvariesfrom
implementatiorto implementationandfrom applicationto appli-
cation. Oftentimes, the visualizationprogramwill lease holesin
thevisualizationwherethe datais missing. Othertimes,they may
explicitly be flaggedandshavn togethemwith the restof the data.
Dependingon the type of data,this may or may not be desirable.
Accordingto [9]: “Empty spacegmust] signify absenceof phe-
nomenaandnot missingdata’ Becauseof the natureof radarre-
turnsfrom NEXRAD, this is oftenthe case- thereis not sufiicient
phenomende.qg. precipitation,air particles)at placeswherethere
areno measurementavailable. As such,NEXRAD datarequires
specialhandlingparticularlywhenit comesto interpolatingneigh-
boringgrid pointswith missingdataasis oftenthecaseduringare-
samplingoperation.Thetreatments similarto thatof interpolating
valid measurementisom a sparsenumberof point measurements



from scatteredveatherstations. For example,Pangetal. [7] ex-
ploredtheinclusionof dataquality or uncertaintyparameterso the
differentmeasurementwhenattemptingto resampleo a full grid
usingavarietyof globalinterpolationandapproximatiormethods.

3 VISUALIZATION ISSUES

One of the primary use of NEXRAD datais identifying storm
clouds and tracking them over time. Figure 2 shawvs a sample
NEXRAD datasetfor a particularinstancein time. Eachcolored
point represent locationin the vicinity of the radarwith a valid

reading.Thevalueateachlocationis pseudo-coloreduchthatlow

valuesare bluish, and high valuesare reddish. It is pretty appar

entthatthereis a significantamountof dark regionswith no data.
Most standardvisualizationpackage®itherfails or give incorrect
visualizationf this dataset.

In this section,we explore several ways of extractingand pre-
sentingrelevant NEXRAD information. In this exercise,we as-
sumethatthe valueof 23.5representsomephysicallysignificant
phenomenosuchaswaterparticlesin the clouds.Hence thefea-
ture of interestis to locatetheserain cell clusters.

Figure2: Pseudo-coloregoint cloudof NEXRAD data

3.1 Point Cloud

A naturalstartwith a scatteredlatasets to simply drav a colored
pointfor eachdatapoint,alsoknown asapointcloud. Theimagein

Figure2 is exaggeratedn the verticaldirectionandquickly points
out the conicalnatureof the grid. It is alsoeasyto seethat most
of the dataarefoundin the lower layersof the atmospherewith

densityquickly recedingin the higherlevels. To find the regions
wherethereis rain (i.e. valuesabove 23.5), we generateanother
pointcloudrepresentatiofor thosevalues.Thisis shawvn in Figure
3 belaw, alongwith the underlyingterrain: the greaterSanFran-
ciscoBay Area. The white pointsareat 23.5moving towardsred

asthevaluesincreaseWe canobsenre thatthelargestcloudcluster
is formedabore the entranceo thebay in theupperleft partof the
image.

3.2 Delaunay Triangulation

While the point cloudis a cheapandsimpleway of identifyingim-
portantvaluesin the datasetthe presentatioris lessthanidealand
tendto getconfusedecausef poordepthcues speciallyin astatic
view. Hence,the next stepin the procesamight beto try andex-
tractasurfacefrom thesepointsof interest.The problemreduceto
oneof creatinga setof trianglesconnectingpointsthatarenatural
neighborsThistaskis accomplishedby usingDelaunaytriangula-
tion onthedesiredsubsebf points—with valuesrangingfrom 23.4
to 23.6. We also modify the algorithmslightly to eliminatelarge
trianglesthat may crop up that connectdifferentclusterstogether

Figure3: Pseudo-coloregoint cloud of NEXRAD datarepresent-
ing “rain” (valueabore 23.5)

Theresultof this operationcanbe seenin Figure4. Here,we start
to seemorecoherenstructuref whatmightbe cloudformations.
This Delaunaytriangulationandthresholdingprocessmay be fur-
therimproved by addinga physicallymeaningfulsetof constraints
thatspecifyboundaryconditionsandsurfacetensioncoeficients.

Figure4: Delaunaytriangulationof datapointsbetween23.4and
23.6

3.3 Interpolation

Interpolationis a popularoption emplg/ed to obtainunknavn or
missingvaluesfrom known ones. A wide variety of algorithms
exist, for example,Shepards [10] inversedistanceweightingfunc-
tions,Hardy’s radialbasismulti-quadric44], andthin-platesplines
[3] to mentionafew. Onemustbe carefulwhenselectingheinter
polationmethod,asmostof themdo not provide ary meansof es-
timatingtheinterpolationerror Thosethatdo, suchaskriging [6],
arecomputationallyexpensve anddo not scalewell with number
of datapoints. Mary researchers.g. [13, 7], have hadto grapple
with theissuesarisingfrom inadequag anduncertaintyin imple-
mentinginterpolationmethods,causedby the lack of constraints
ontheoutputdata. An exampleof suchside-efectscanbe seenin
Figureb. Here,thesamedatasetisseerpreviously in Figure2 was
resampledo a 40x40x20grid using Shepards method. We then
generatedsosurficesusinga thresholdof 23.5. The resultingiso-
surfaceshave alayeredook asif thevolumeof thecloudsincrease
at differentlayers. This problemsis not a featureof the databut
ratheran artifact from the interpolationalgorithm. Using Hardy's
multi-quadricsalso hasa major disadwantagebecauset can pro-
duceinterpolatedvaluesoutsidethe original datarange.
Findingareliableinterpolationschemegspeciallyfor unevenly
distributed datais still a greatchallenge. Furthermorefor mary



Figure5: UndesirableartifactswhenusingShepard interpolation

ervironmentaldatait meansgoing from a small setof trustworthy

informationto alarge setof untrustvorthy information.In the case
of NEXRAD, wheremissingdatasignifiesa lack of atmospheric
phenomenat wouldbemeaninglest attempandproduceavalue

atall cost.

3.4 |sosurface

Sothen,why not simply replacethe missingdatawith a valuethat
is outsidethe valid range(e.g. NaN) and proceedwith standard
algorithms? Contourlines in 2D or isosurficesin 3D canbe er

roneouslyformedwherenoneare meantto exist. In generalfalse
contourswill shav aroundthe clustersof valid points,thusgiving

thedataseanartificial “layer” whichinfluencesaandwill beseeron

mostthresholdindevels.
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Figure6: Incorrectcontourswhenarbitrarynumbersareused

Figure6 shaws the problemsencountereadvhenuserschooseto
arbitrarily fill the datasetwith datathatis outsidethe valid range.
In this illustration, we have chosen99.99and-99.99to represent
“invalid” numbers,and gave an exampleof iso-linesat threshold
value2. As canbe seenfrom this example,dueto linear interpo-
lation alongthe cell edgesjncorrectcontouredgesareproducedn
cellscontaininginvalid points. Volumevisualizationssuchasiso-
surfacinganddirectvolumerenderingwill suffer aswell, unlesshe
algorithmsaretransformedo explicitly ignoreinvalid datapoints
duringinterpolationproceduresin addition,algorithmsusinggra-
dientinformationto calculatethe surfacenormalsmustbeadjusted
to usecentral forwardor backwarddifferencesdependingpnwhat
configurationof datapoints are available for the cell. Perhapsa
betterapproachis to ignore cells with missingdatapoints. This
approachs presentedbelow.

3.5 Modified Normals

Fortunately novadaysmary visualizationprogramsareableto ig-
norethe “missing” grid pointsandproducean imagefor only the

partof thegrid thatyield completecells. An exampleproducedoy
VTK [8] canbe seenin Figure7. Unfortunately whenthereare
large gaps,andthe datais of high frequeny, suchasin the case
with NEXRAD, theisosurficesappeagrairy andspiky.

Figure7: Isosurficeat 23.5threshold

We have developeda methodto smoothout someof therough-
nessseenin anisosurficecreatedfrom sparsegriddeddata. The
first stepis implementedisinga first-orderneighborhoogmooth-
ing algorithmsimilar to the oneseenin [11]. We usethe gradient
information of the neighborpointsto adjustthe surfacenormals.
Out of the 6 neighborpoints,eachvalid oneadds10 percentof its
valueto the neighbor The ideais to exploit the natureof atmo-
sphericdataandpropagatehe neighboringnformationamongthe
cells. In essencave arecompensatindor alack of informationby
passinginformation around. Anotherway of thinking aboutit is
thatwe areusinga low-passfilter to smooththe signal. Figure 8
shavs thevisualeffectsof smoothinghe surfacenormals.

With smoothing

Withoutsmoothing

Figure8: Effectsof modifying surfacenormals

3.6 Modified Isosurface

In additionto modifying the surfacenormals we take the previous
methoda stepfurther and smoothboth the point locationandthe
surfacenormalsof theisosurficetriangles.

This methodworks asfollows:

e Calculatethe gradientat eachvalid grid point, using either
central forward or backwarddifferences

e Updatethe gradientat eachvalid grid point by addinginflu-
encedrom thevalid neighbors

e Repositioneachvalid grid pointin the directionof the gradi-
entvector

e Createsosurfceusingstandardechniques



Imagesof anisosuricedetail beforeandafterthe modification
areseenin Figure9 belav. Ourresultsshav thatalthoughremark-
ableeffectsarenot likely, this methoddoessmoothout the sharp
edgedo bring outthe cloud-like natureof thedataset.
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Figure9: Effectsof modifying geometryandsurfacenormals

3.7 Smoothed Isosurface

Finally, the mostsuccessfulisualizationwas producedwhenwe
useda Taubins [12] smoothingalgorithmthatfunctionsontheiso-
surfacegeometryby balancingout the bumpsandvalleys. This is
a non-shrinkingvariantof the Gaussiarsmoothingalgorithmthat
moves verticesof the isosurbicegeometryinwardsand outwards,
in alternatingsteps. The imagein Figure 10 was createdafter 20
iterationsof thealgorithm.

Figure10: Geometricallysmoothedsosurfice

4 CONCLUSIONS

Unevenly samplediataposeacommonproblemfor scientistsieed-
ing efficient and appropriatevisualizations. We have presented
someof thechallengesnherentin handlingsparsegriddeddataand
shavn somecommonmethodsin visualizing suchdatasets.Fur-
thermore we have presenteda measurdor improving the isosur
facesproducedrom griddeddatasetsvith alarge numberof miss-
ing values.In the future, we would like expandthe domainof our
researclinto otherphysicalsciencesndexperimentwith avariety
of gradientffilters.
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