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Abstract

Maps of biophysical and geophysical variables using Earth Observ-
ing System (EOS) satellite image data are an important component
of Earth science. These maps have a single value derived at ev-
ery grid cell and standard techniques are used to visualize them.
Current tools fall short, however, when it is necessary to describe
a distribution of values at each grid cell. Distributions may repre-
sent a frequency of occurrence over time, frequency of occurrence
from multiple runs of an ensemble forecast or possible values from
an uncertainty model. We identify these “distribution data sets”
and present a case study to visualize such 2D distributions. Dis-
tribution data sets are different from multivariate data sets in the
sense that the values are for a single variable instead of multiple
variables. Data for this case study consists of multiple realizations
of percent forest cover, generated using a geostatistical technique
that combines ground measurements and satellite imagery to model
uncertainty about forest cover. We present two general approaches
for analyzing and visualizing such data sets. The first is a pixel-
wise analysis of the probability density functions for the 2D im-
age while the second is an analysis of features identified within
the image. Such pixel-wise and feature-wise views will give Earth
scientists a more complete understanding of distribution data sets.
See www.cse.ucsc.edu/research/avis/nasa is for additional in-
formation.
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1 INTRODUCTION

To advance scientific understanding of the entire Earth as a sys-
tem, NASA’s Earth Observing System (EOS) is providing regular,
synoptic observations from low Earth orbit for a minimum of fif-
teen years. These observations are converted into biophysical and
geophysical variables, for example surface reflectance, snow cover,
temperature, and fraction of absorbed photosynthetically active ra-
diation, using complex model-based algorithms. An important type
of EOS product consists of maps of biophysical variables giving a
“snapshot” of the state of a region at a given point in time. Increas-
ingly, the need exists to comprehend a new dimension from these
Earth science data and models. This dimension can be considered
“probability space,” connected with the frequency of occurrence of
a biophysical value over time or a probability model, such as that
representing uncertainty about the map, developed for a particular
investigation. That is, for many investigations, there exists a proba-
bility density function (pdf) for every grid cell in the map represent-
ing a region or for every region over time (or both). We call these
distribution data sets. In this paper, we examine 2D distribution
data sets where we have a pdf at each pixel.

Distribution data sets are those that contain a set of values that
can be represented as a distribution at each pixel. Data sets of this
type arise in a number of Earth science applications and situations.

Some examples include: distributions at each sample location in
the 2D field based on a model with uncertainty components, distri-
butions at each sample location representing the frequency of val-
ues occuring over a period of time and distributions of data from
ensemble model runs and/or “fused” measurements from multiple
satellite sensors [14]. Some EOS data products have formally de-
fined uncertainty metrics [9, 10]. Uncertainty may be modeled as
standard error, or a full pdf from a conditional simulation model
[5, 6]. However, such uncertainty is rarely visualized in 2D.

Existing tools and packages that deal with image processing and
geographic information systems (GIS) typically do not support dis-
tribution data sets. For example, GIS systems typically deal with
static 2D data primarily as layers where users of these systems usu-
ally process one map at a time. What is needed is the ability to
process all the distributions as a single set. Further, it is desirable
to probe and query the set of distributions about the properties of
features within the region, such as clumps with similar values of
the biophysical variable. Distribution data sets are different from
multivariate data sets in the sense that the values are for a single
variable instead of multiple variables. This fact alone requires a
re-examination of how popular multivariate analyses tools such as
projection pursuit (PP) or principal component analyses (PCA) [11]
can be utilized, if at all.

This case study focuses on how to visualize 2D distribution data
sets generated through conditional simulation. The remainder of
this paper includes a brief description of two distribution data sets
followed by our progress to date in visualizing both pixel-wise and
feature-wise summaries of these spatial distributions.

2 DATA SETS

A case study was made on two 2D distribution data sets created
using conditional simulation. Conditional simulation, also called
stochastic interpolation, is one way to model uncertainty about pre-
dicted values in a spatial field [12, 13]. It is a process by which
spatially consistent Monte Carlo simulations are constructed given
some data and assumptions [2]. Conditional simulation algorithms
yield not one, but several maps, each of which is an equally likely
outcome from the algorithm. Each equally likely map, called a re-
alization, has certain properties. The properties are that

1. the values at sampled locations (locations where ground-truth
exist) are identical to the sample values,

2. the frequency distribution of values from the map is the same
as that deemed realistic from the sample data and

3. the spatial pattern of the values has the same spatial autocorre-
lation function as that deemed realistic from the sample data.

Taken jointly, these realizations describe the uncertainty space
about the map. Any number of realizations may be generated by
a particular conditional simulation algorithm; Chiles and Delfiner



[2] recommend at least 100. Conditional simulation was first ap-
plied in a remote sensing/Earth observation context by Dungan et
al. [8]. To some extent, the application of this method has been
hindered by limited and cumbersome visualization tools.

The case study data are from a synthetic example constructed
using a small region in the Netherlands imaged by the Landsat
Thematic Mapper [6]. Imagine that the biophysical variable to
be mapped across this region is percent forest cover. Say there
are ground-based measurements of forest cover from 150 well-
distributed locations throughout this region as well as space-based
measurements from Landsat of a spectral vegetation index. This
spectral vegetation index is related to forest cover in a linear fashion
but with significant unexplained variance. Further assume that the
ground area represented by a field measurement is equal to the area
represented by one pixel. Two distribution data sets were generated
using this information: Case1, generated using a conditional simu-
lation algorithm [4, page 170] taking into account ground measure-
ments only; and Case2 generated using conditional co-simulation
[4, page 124] using both ground measurements and the coincident
satellite image. Each data set consists of 101 � 101 pixels and 250
realizations. Values range from 0 to 255, rescaled from % cover.

The next section describes two approaches for visualizing
Case1 and Case2: on a pixel-by-pixel basis and on a per-feature
basis.

3 PIXEL-WISE SUMMARIES

The problem here can be stated as follows: given a 2D distri-
bution data set F

r

(i; j); where i = 1; : : : ; N , j = 1; : : : ;M ,
r = 1; : : : ; R, and R is the number of realizations of the N �M

image, analyze the probability density function at each pixel. A
simple approach would be to plot the histogram at each pixel. How-
ever, displaying a distribution at each pixel is not tenable when there
are more than a very small number of image pixels. Or one could
treat the data as a 3D volume V (i; j; r) = F

r

(i; j), where realiza-
tion is treated as the third dimension. Then one can interrogate the
volume data with existing visualization techniques such as cutting
planes, isosurfaces, or even volume rendering. Isosurface represen-
tations (Figure 1) of Case1 and Case2 show dramatic structural
differences between the two pairs of distribution data sets. These
differences indicate that the addition of image data into the condi-
tional simulation in Case2 changed the values, though it is difficult
to summarize exactly how. Also, the isosurfaces do not summarize
uncertainty effectively. Straight application of isosurfaces as well
as other techniques (e.g. volume rendering, non-orthogonal slices,
and attempts at smoothing out the data) would somehow use the
order of the realizations. But in the case of conditionally simulated
realizations, order is not relevant, and smoothing is not desirable.

The central tendencies of the distributions from conditional sim-
ulation are often mapped to show what the most likely or common
values are. The spread of the distributions are the most obvious
way to summarize uncertainty. That is, the wider the distribution,
the greater the range of possible values and therefore the less the
certainty about that location. The best statistic to summarize a cen-
tral tendency or spread depends on whether the distributions are
parametric or non-parametric.

Parametric distributions can be fully described by one or more
parameters of a known analytical function (such as Gaussian, Pois-
son, Beta, etc.). Mean and variance statistics are sufficient to fully
describe Gaussian and Poisson distributions. Non-parametric distri-
butions cannot be completely summarized by function parameters,
but summary statistics still give useful information. Quantiles (such
as the median) and quantile differences (such as the inter-quartile
range) are good summaries of the central tendency and spread of
non-parametric distributions while kurtosis describes the “flatness”
of the distribution and skewness describes its asymmetry. Positive

skewness signifies an asymmetric tail extending toward positive x.
Since it may not be known in advance whether the distributions are
best described as parametric or non-parametric, flexible tools are
needed to summarize data sets.

We calculated these standard statistical measures – mean, me-
dian, standard deviation, interquartile range, kurtosis and skewness
– at each pixel across the realizations. In particular, standard de-
viation or interquartile range can be used as uncertainty metrics.
The image plane can be colored according to any of these statistical
measures or metrics and viewed separately. Alternatively, they can
be simultaneously displayed in the same viewing space so that the
scientist can study relations among the measures.

Figure 2(a) represents four statistics for Case2. The bottom im-
age plane is colored based on the mean, the upper plane is deformed
by the standard deviation and colored by the interquartile range, and
the heights of the vertical bars represent the absolute value of the
difference between mean and median values (only values above 3
are drawn). For reference, the vertical bars are also colored by the
mean field shown in the image plane. Five color bands were used
for the figure; cyan denotes low values of forest cover and red de-
notes high forest cover. The flexible selection of thresholds for the
vertical bars allow the detection of extremes by different criteria,
which would be application-specific. In this case, the regions with
the lowest and highest values of forest cover also appear to be the
most uncertain, judging from the “hills” in the deformed plane and
the arched ridge that runs from left to right near the top of the im-
age.

Figure 2(b), also using Case2, depicts the median as the colored
image plane (using the same color map as shown in Figure 2(a)), the
kurtosis field as the deformed upper plane which is colored accord-
ing to skewness and the absolute value of the median-mean differ-
ence as vertical bars. The color of the vertical bar matches the color
of the median field shown in the image plane. Three colors were
used to depict skewness of the distribution at each pixel. The green
regions of the surface graph represent negative skewness while the
red regions represent positive skewness. The yellow regions rep-
resent no skewness, which only occur in a few areas. As in 2(a),
the extreme values come from unusual distributions – those that are
most skewed.

Another method that we have used to summarize the distribution
data is to display a histogram cube. Conventionally, the scientist
would plot the histogram at each pixel. In our approach, we gen-
erate a 3D histogram cube H(i; j; b), where b = 1; : : : ; B, using
the following steps. First, we specify B, the number of bins (i.e.
the number of data value ranges) and then assign the data ranges
of each bin based on the minimum and maximum values in the dis-
tribution. Next, we compute the histogram at each pixel and store
the frequency count in each bin. Finally, we construct the cube by
letting the first slice contain the frequency count of the first bin, and
so on for the rest of the slices. Hence, the value at each pixel in
a slice is the number of realizations with the same data range. We
found that the histogram cube is very effective in visualizing the
modality (i.e. the number of peaks) of the distributions. Figure 3
shows the horizontal cutting plane H(i; 50; b) and vertical cutting
plane H(60; j; b) of the histogram cubes for Case1, Case2, and a
synthetic unimodal distribution data set. The latter is a data set gen-
erated by drawing randomly from a Gaussian distribution without
any spatial autocorrelation. Both cutting planes are perpendicular
to the realization plane H(i; j; 0) (the left facing plane) and show
the frequency counts across all bins. In this figure, seven color
bands were used and the colors vary from dark to bright in each
band. Hence, variations of gray denote low frequency count while
variations of red denote those with high frequency count. For this
figure, 15 bins were used for the histogram (i.e. B = 15). Case1
and Case2 have narrower distributions and more spatially coher-
ent patterns than does the random image. In addition, Case1 has



a more spatially coherent pattern than does Case2 because the use
of satellite image data increased the spatial variation in the Case2
simulation.

(a) (b)

Figure 1: Isosurface representations of two distribution data sets. (a) Isosurface at

a value of 130 using one explanatory variable (Case1), and (b) isosurface at a value

of 130 using two explanatory variables (Case2). The 250 realizations run along a

diagonal axis from the lower left to the upper right corner. The pair of corresponding

slices in the middle of (a) and (b) is one of the 250 realizations, added to help orient

the data.

(a) (b)

Figure 2: Pixel-wise representations from the Case2 data set. (a) The bottom plane

is the mean field colored from non-forest (cyan) to closed forest (red). The upper

plane is generated from three fields: the surface is deformed by the standard deviation

field and colored by the interquartile range; and the heights of the vertical bars are

from the absolute value of the difference between the mean and median fields colored

according to the mean field on the lower plane. Only difference values exceeding 3 are

displayed as bars to reduce clutter. (b) The bottom plane is the median field, while the

upper plane is deformed by the kurtosis field, and colored by the skewness field (green

denotes negative and red denotes positive). The deformed surface uses the colormap

indicated in (b), while the vertical bars are colored by the median field below. The

heights of the vertical bars are the absolute value of the difference between mean and

median values as in (a). See color plates.

4 FEATURE-WISE SUMMARIES

Besides individual pixels, scientists are also interested in clumps of
contiguous, similarly-valued pixels. These similar values may be
recognized as a class, and spatial features representing this class are
typically important. An example is percent forest cover identified
by classification of spectral data in the visible and near infrared.
Though percent cover is a continuous variable ranging from 0 to
100%, ranges of cover are often categorized into non-forest, open
and closed forest classes. Scientists need to know the area covered
by each class as well as the uncertainty about that area [7, 3]. The
areas and shapes of individual forest patches or clumps are also of
interest [1, 15].

To identify the class of interest, the scientist would first pick a
pixel location p that has a value range within the class, i.e. 0-10%
(for non-forest) or 80-100% (for closed forest). Then, the area
of the clump surrounding pixel p, the contiguous region of pix-
els of the same class, can be determined by recursively searching
and counting the neighboring pixels within the same value range as

(a) (b) (c)

Figure 3: Histogram cube of three distribution data sets: Case1, Case2, and a

synthetic unimodal distribution. While the dark region in each color band may poten-

tially be ambiguous, it is not the case based on the context of where they appear in

the visualization. Experiments with other similar colormaps did not produce as much

detail as this one. See color plates.

pixel p. The clump area calculation is first performed in the current
realization. Next, because the scientist is interested in the variabil-
ity of this clump, i.e. how much does the clump grow or shrink from
one realization to another, the clump area around the chosen pixel is
computed for the rest of the realizations, one at a time. It is possible
that for some realizations, there is a different class at pixel p. In our
approach we identify all the possible classes in the realizations and
compute the clump areas of these classes for all realizations. Thus,
for a given pixel location in any realization, we know the class that
the pixel belongs to and its clump area. Next, we provide two inter-
rogating tools for the scientists to analyze clump area statistics. We
now discuss these tools and their usefulness.

We first provide a probe via a crosshair that allows scientists to
interactively interrogate the clump area statistics. As the scientist
moves the probe within the image of a single realization, our tool
reports the current class and its clump area at the current probe posi-
tion. In our implementation, we allow the scientist to move forward
or backward to a desired realization and then move the probe within
that realization. Our tool also reports the pixel-wise summary dis-
cussed in section 3. Thus, at the current probe location, the scientist
can get the the mean, standard deviation, interquartile, skewness
and kurtosis values. In addition, we compute the histogram of the
clump area at the current probe position. The histogram of clump
area at the current probe allows the scientist to get uncertainty met-
rics, such as standard deviation or interquartile range, of that fea-
ture. Figure 4(a) shows the probe in a location and the histogram
of area surrounding that location. The x axis is the area size and
the y axis represents the frequency as a percentage, i.e. the num-
ber of realizations found with the same class at the probe location
divided by the total number of realizations (250). The histogram
shows that the area of this clump, a clump within the “green” class
here (scaled % cover values ranging from 101 to 152) is either quite
small or, more likely, moderately large. Rather than naively choos-
ing a mean area for this clump, the histogram indicates that the area
is more likely to be accurate with a higher value (as indicated by
the tallest rectangle towards the positive end of the x axis).

Our second tool highlights clump size and their locations. First,
we determine the number of clumps in the realization. Then for
each clump, we plot a vertical line whose length is proportional to
the clump area. Thus, we would see many lines originating from the
clumps. Using the lines to represent clump area gives a helpful per-
spective on the relative clump areas in the realization and one where
the eye is less likely to be fooled by complex or circuitous shapes.
Traditionally, the scientist would rely on color-encoded realizations
only to visually assess or compare the clump areas for each class in
the realization. With many clumps in each realization, this is often
a tedious task. In realization 10, there are 513 clumps in total with



5 classes denoted by the color bar. Many (307) of these clumps
consist of only one pixel (unit area). If these single pixel clumps
were represented as lines, this would distract the viewer from more
significant clumps. Therefore, we allow the scientist to “shave-off”
these undesirable lines by not plotting clump areas that have unit
area size. Figure 4(b) shows the clump area line bars for realization
10 of the Case2 data set. In the figure, all lines with a clump area
that is less than two pixels are not drawn. Somewhat surprisingly,
the largest clumps (besides the “background” clump shown in blue)
are in the semi-contiguous arch near the top of the image. Because
these clumps are long and thin, it would be difficult without the
lines to see that they have significant size. We also attempted to
use rectangle blocks to represent clump area instead of lines (not
shown here). However, because there are often many clumps in one
realization, the rectangle blocks can easily obscure other rectangle
blocks in the realization making it difficult to convey the clump area
information.

Another interesting problem is where to plot the line within each
clump area. A simple approach would be to pick any arbitrary pixel
in the clump. We use a more meaningful approach that plots the line
at the pixel with the lowest pixel-wise variance in the clump. The
scientist can choose to use some other specified statistical values
instead of variance. Furthermore, our tool can depict a symbol on
top of the vertical line to quickly identify all clumps above or below
a given value. Our tool can also loop through all the realizations
and show how the clump area lines change across the realizations.
We propose that the vertical lines help to clarify how clump areas
change across the realizations. During animation, it can be difficult
to judge the relative areas of clumps, but the vertical lines, as they
lengthen and shorten, give a useful sense of areas both across the
realizations and across the mapped region.

(a) (b)

Figure 4: Two representations of realization 10 of the Case2 data set. (a) Interac-

tive histogram plot (above the color bar) of clump area for the current probe (crosshair

cursor) location in the realization. (b) Clump area line bars in the realization. A total

of 166 line bars are drawn. See color plates.

5 CONCLUSION

Our case study shows the value of two ways of visualizing distri-
bution data sets generated using conditional simulation. Such tech-
niques also may be useful for portraying distributions from a long
time period, such as values of a biophysical or geophysical variable
on a given date at a given location over a period of several years.
Multiple realizations may also come from alternative runs of a de-
terministic process model with varying parameters. The visualiza-
tion tools presented in this paper are designed to help the scientist
analyze distribution data from the Earth Observation System and
EOS will provide directions for future visualization research. Our
future work plans include: more extensive user studies following
initial user feedback during the design and development phase of
the project, extension to larger images to test the extent to which
pixel-wise and feature-wise techniques scale (current implementa-
tion running on a high-end PC can support data up to 1000 x 1000

with 200 realizations), the development of novel means of visual-
izing all of F

r

(i; j) at once, study of time-varying distribution data
sets and the comparison of distribution data sets.
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