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ABSTRACT

We process multispectral satellite imagery to load into our environmental database on the UCSC/ NPS/MBARI{
REINAS project.1 We have developed methods for segmenting GOES (Geostationary Operational Environmental
Satellite) images that take advantage of the multispectral data available. Our algorithm performs classi�cation
of di�erent types of clouds, as well as characterization of the cloud elevations. The resulting information is used
to incorporate the texture mapped satellite imagery into a combined model/measurement visualization. The
approximate cloud elevations, types, and opacities are used to develop a three-dimensional model of the cloud for
use in visualization. Discrete Karhunen-Loeve transformations, or Hotelling transformations, are used to calcu-
late the principle components from the multispectral data. The accurate segmentation and feature extraction of
the clouds assists in validation and evaluation of atmospheric prediction models with true remotely sensed data.
We demonstrate the integrated measurement model visualization with an Open GL application using texture
mapping. The spectral data is also used to control the free parameters in the texture mapping of the modelled
clouds. We are working on further improvements to develop novel compression techniques utilizing the KLT with
segmentation and feature extraction, and also hope to develop algorithms that visualize the compressed imagery
directly.
Keywords:Multispectral imaging, KLT, texture mapping, morphology, feature extraction, visualization

1 INTRODUCTION

Clouds are a commonly encountered phenomena that are di�cult to simulate because they are complex
in shape and interact with light in a complex fashion. In addition, failures in simulation are easy to detect, as
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everyone knows what clouds look like. They are also an important phenomena in weather, and therefore important
for meteorological nowcasting, forecasting, and understanding. There is a wealth of information available from
the visible clouds, and satellite remote sensing makes gillions of bytes of data available. This paper overviews
the challenges in interpreting satellite cloud images for use in evaluating environmental atmospheric forecasting
models. Our research goal is data fusion, which includes combiningmodel (forecaster's numerical weather models)
and measurement data (satellite remote sensed images and information from weather sensors.)

Data fusion and data assimilation are not only necessary to validate forecaster's numerical models, but they
are also necessary to start or initialize model runs. We focus on the image processing and graphics visualization
necessary for this fusion. We break the analysis into a �ve step pipeline: satellite and model collection, cloud
segmentation/extraction, cloud classi�cation, cloud modelling, and �nally rendering satellite and model data,
Figure 1. Satellite data are downloaded to ground stations where they are disseminated to analysts. Model data
are computed at regular intervals at regional supercomputing facilities. Once the satellite data are available,
image processing techniques are used to separate the clouds from the background, and to separate the various
cloud types. Once the images have been suitably segmented, the cloud regions are classi�ed to �nd cloud types,
elevations, and thicknesses. This information is used to create three dimensional cloud models depending on
cloud type. The modelled clouds should reect the reality of the remotely sensed data as closely as possible,
while extrapolating to three{dimensional cloud objects from the two{dimensional satellite images. This problem
is very similar to tomographic back projection with the di�culties of only a single projection, but there is a
wealth of domain knowledge available. Using the three{dimensional cloud models, a combined visualization
of the cloud model and forecast model can be rendered. Many features are available within the forecast data
including temperature fronts, humidity regions, wind shears, and comparison to remotely sensed clouds may be
used for validation, hypothesis testing, and context.

We have built a system which uses the GOES-8 (Geostationary Orbital Earth Satellite) satellite multispectral
data to create 3D cloud models. We have tried extensive use of discrete Karhunen{Loeve transform techniques for
segmentation and compression. (See our paper on compression.2 ) We have also tried various classi�cation ap-
proaches and cloud modelling techniques. In this paper we illustrate a functioning system, discuss implementation
tradeo�s, prior work, and future planned enhancements.
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Figure 1: Five Stages for Multispectral Cloud Processing to 3D Visualization Fusion

1.1 EXISTING METHODS

As this is an important area of research, there are numerous published examples of cloud rendering, modelling,
segmentation, and remote sensing. Approaches can be grouped into graphics and image processing and rendering



systems. Our goal has been to fuse these areas.

Graphics work such as Blinn's demonstrates early modelling of planetary rings,3 using transparency equations
to model the complex e�ects of dust particles. He stated that the 3D light and particle modelling problem was
the next important step. Kajiya and Von Herzen used simple models of clouds and complex 3D shading and
radiation transfer calculations.4 The modelled clouds and lighting calculations took many hours to compute on
available hardware (1984). Gardner5 developed models of clouds using a 3D volume texture function. He stressed
a simpli�cation over the earlier models to generate good results using planar and simple curved surface models
with variable surface shading and transparency. Recent work using 3D textures includes Ghazantarour et al..6

Max et al.7 in order to animate clouds created simple models of clouds, and in Max8 they also extended the
earlier light models, and showed some simple clouds. In Max, Craw�s, and Williams9 they created clouds using
an isosurface threshold from a computed climate model, and texture mapping on surfaces. Computing clouds
from a model is much more di�cult than using satellite remotely sensed data to create clouds. Max et al. also
experimented with computing haze.

Image processing systems such as those developed at NRL demonstrate development of segmentation and
classi�cation software in order to automate at sea use of satellite images. The work is surveyed in Peak et
al.,10 and subsequent work on larger software packages such as TESS3 and ExperCAT have incorporated these
results. Other e�orts similar to ours include the use of sounder data for determining cloud elevations as done
in Brubaker et al.11 Earth Watch Communications Inc. has developed GOES-8 segmentation, classi�cation, and
modelling of clouds for various areas of the globe. They also use Silicon graphics workstations to render their
cloud models, which are viewable from the world wide web.12 Local TV News stations, in San Jose California
use a similar visualization, which may be Earth Watch Communication's product to present y throughs during
their weather forecasts. The clouds are clearly texture mapped{large polygons, and the main visual impact is a
result of rendering the underlying complex San Francisco and Monterey Bay areas.

Hardware systems such as those used in ight simulators have also required modelled and rendered clouds.
Cloud modelling is essential for photorealistic ight simulation, and also needs to be highly e�cient for the
necessary real-time rendering rates. Some simple approaches to ellipsoidal clouds are shown in ight simulators
in the survey book by Schachter page 161 to 164.13 Simulators also compute haze and fog which is related to
the modelling work of Blinn, with the added advantage of specialized hardware for real-time rendering. Modern
ight simulators including cloud e�ects include our Boeing B1-B CIG14 and the McDonnell Douglas trainers. In
video games there is a need for simplistic e�ective models to heighten the reality of ight simulation or other
3D rendered games. Video games optimize on the visual impact versus cost, and the use of clouds has therefore
been more surrealistic than photorealistic. Video games incorporating 3D models of clouds include BlackOps-
Entertainment's Agile Warrior F-11X for the Sony Playstation and Graphic Simulation's FA-18 Hornet for the
Macintosh.15

1.2 SATELLITES, RADARS, SENSORS, AND MODELS

As part of the ONR-REINAS project, the University of California Santa Cruz is spearheading the collection
of many modalities of data in real{time to support meteorologists and oceanographers. We are ingesting satellite,
radar, in situ sensors, and model data into an information system. One of the goals of the project is to make
progress towards combined model measurement visualization. In this section we briey cover the data sources
that this study makes use of. The satellite sources we have focused on are the collection of GOES (Geostationary
Observational Environmental Satellite)16 satellites. Most of the data used is from the current GOES-East satellite,
which has an AVHRR sensor for high resolution capture, on GOES-8. We are eagerly awaiting the switch over
of the GOES-West satellite from GOES-7 to GOES-9, so we will have the same resolutions and spectral data as
for GOES-East. Our current data feed is the National Weather Service, and NASA Goddard.17 The data are
available in resolution spacings of 1 km, 4km, and 24km. We are using 8 bit images of 5 bands, with 600 vertical



by 1400 horizontal resolution.

We also have data available from Radars and sensors, such as three Codar (TM) (Coastal Ocean Dynamic
Radars) ocean current sensing radars, NOAA and Varian wind pro�lers, and a network of anemometers{wind,
humidity, temperature, and pressure sensors. Currently the real{time network has a sampling about the size of
the Monterey Bay (50 miles), but the GOES-W satellite resolution is poor for this coverage (5 pixels). Further
details on sensors can be obtained through our technical report.18

The model data that are computed more closely match the available scale of satellite data. We currently use the
NORAPS data,19 a regional forecast model. The footprint of the NORAPS data can be seen with the combined
GOES-West/NORAPS visualization in Figure 2. Our satellite processing techniques use the GOES-East satellite
until the GOES-9 becomes fully operational.

Figure 2: Simultaneous GOES satellite images rendered with NORAPS data in the Spray visualization system

2 CLOUD SEGMENTATION/EXTRACTION

2.1 Overview

Figure 5.a shows a cloud visible band image. The clouds are easily apparent in these visible band images, but
there are a few complications to segmentation. Large masses of clouds, varying illumination, underlying snow
cover, and irregular shapes make cloud segmentation more of a challenge. Cloud detection methods can be divided
into several classes. The simplest is the so-called \radiance" threshold method where all pixels over a �xed value
of illumination are considered to be cloud. These methods imply the choice of an arbitrary threshold value. From
this simple approach more complex methods have been developed by meteorologists. As reviewed by Rosbow,20

they can be divided depending on the use of radiance, variance in space, time or wavelength. The most common
is the spatial variation cloud detection method,21 having some drawbacks when used in some land ares and polar



regions. The time variation based methods22 fail when the clouds exhibit very small time variations as tropical
marine boundary layer. Finally, the spectral variance methods take into account the spectral signature of clouds
and identify speci�c cloud types.23 These spectral methods use information from given selected channels and
detect clouds by cluster identi�cation in a typically 2-D scatter plot.

In our approach, all the available wavelengths are used to detect the clouds. The main di�erent spectral
signatures present in the scene are �rst extracted (principal components) and a 4-D clustering algorithm is used
to extract the regions belonging to each main component, clouds being one of them.

2.2 Multispectral Cloud Extraction

Multispectral information provides more e�ective segmentation for cloud extraction. The use of multispectral
bands for feature extraction can be a precious source of information but it poses a number of problems. Having
several spectral bands makes the analysis algorithms more complex and ine�cient, thus it is important to choose
the most representative bands. One means for band selection is to apply a decorrelating transformation to the
spectral images. We have chosen to use the discrete Karhunen-Lo�eve Transformation (KLT) (more properly known
as the Hotelling transform), because it optimally extracts and sorts the spectral components of the scene by order
of importance. By using this transformation, the analysis algorithm may use fewer components in their order
of importance. The KLT has been widely used in remote sensing for multispectral imagery, and is also known
as principal component analysis. It has been shown to be more e�cient than analysis of the original spectral
bands.24 These components usually contain the most relevant information of the scene. For our application the
components are mainly clouds, sea, land, and snow.
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Figure 3: Block diagram of the multispectral cloud extraction

Figure 3 shows the cloud extraction algorithm. The principal components are obtained, and the �rst n are
selected. The choice of n is a trade-o� between low analysis complexity and accurate representation. Experimental
results have shown that n = 3 is a good value. The three main components are then mapped into a 3-D
histogram.25 Figure 4 shows a multidimensional histogram. The choice of a multidimensional histogram avoids
the recursive computation used in classical clusterings. The 3-D histogram de�nes a hypersurface (a 4-D surface).
This surface presents a set of well de�ned maxima that are extracted by morphological opening operators after
smoothing. The maximal peaks are extracted and sorted in order of importance. Given a number of classes
(typically small) the same number of peaks are selected, and all the pixels are classi�ed following a criterion of
maximum correlation.

The algorithm yields a segmentation map with di�erent classes. Since the requested number of classes is
small (typically three) all types of clouds are segmented into the same class. The procedure of selecting the class
belonging to the clouds is based on the analysis of the mean of the spectral signature of all the pixels belonging
to the segment. In this way the class of clouds is easily detectable (the one that presents higher pixel values in
the visible and lower in the infrared band). Figure 5 shows the cloud extraction results.



Figure 4: Multidimensional Histogram for Cluster Detection and Segmentation (example showing only 2 compo-
nents)

Figure 5: a. Visible GOES8 band. b. Extracted cloud by multispectral segmentation.



3 CLOUD CLASSIFICATION

In the previous section we presented a cloud extraction method. The cloud can be further segmented into
di�erent classes depending on their spectral signatures. The same clustering algorithm can be applied again inside
the cloud classi�ed image areas. Di�erent types of clouds can then be obtained. There are three principal cloud
forms: Cirrus, Stratus, and Cumulus. These forms have been re�ned into 10 basic types.26 See Table 1. There
are many ways to classify clouds given the satellite remotely sensed data. Clouds are classi�ed by shape, tem-
perature/elevation, elevation from sounder data, elevation from aircraft, spectral clustering analysis, and training
of rule based systems or neural networks. The temperature-to-elevation-mapping and type of cloud dependence
changes in di�erent latitudes, and through di�erent seasons so the classi�cation is highly time dependent. True
classi�cation of the clouds requires climatology and meteorology expertise, and some systems have worked on
codifying that expertise.10 Once the remotely sensed clouds are classi�ed, they can be more easily modelled,
making assumptions about their shape, size, characteristics, and thickness. We have developed various ideas for
cloud classi�cation such as using a temperature to elevation mapping, which then maps elevations to cloud types.
Other more sophisticated table based schemes can also be used, for example by building a multidimensional
table with size and temperature as independent variables, and the lookup value would be the cloud type. The
GOES data users's guide even provides classi�cation tables for image regions, seasons, and wavelengths to aid in
interpretation. These tables should be used as part of the classi�cation process.

Table 1: 10 basic cloud types and classi�cation information

cloud type description elevations (feet)

Cirrus �brous like or silky sheen 26,000-35,000
Cirrocumulus thin white patch 26,000-31,000
Cirrostratus transparent clouds that make halos of sun or moon 20,000-26,000
Altocumulus bumpy rounded masses, like wool 12,000-20,000
Altostratus transparent blue/gray clouds with no halo 7,000-15,000

Nimbostratus storm cloud, dark, covers sun 0-6,000
Stratocumulus gray or whitish layer with dark parts 5,000-10,000

Stratus low clouds with drizzle or snow, no halo 0-5,000
Cumulus Rising mounds of cauliower white 2,000-10,000

Cumulonimbus Huge towers, storm clouds, hail, lightning 2,000-26,000

We use cloud thickness as a key modelling parameter. Extraction of cloud properties has been studied
by meteorologists.23,27 The determination of cloud thickness from multispectral infrared channels is somewhat
di�cult and dependent on the satellite features.28 In this paper the determination of the numerical cloud thickness
is estimated by using the third infrared channel of GOES8 to be proportional to the cloud thickness. This channel,
although not giving a true thickness cloud value, can be considered as representative of the thickness. More
sophisticated models using additional remotely sensed data can be substituted to improve the thickness estimate.
We believe that more sophisticated multispectral processing techniques shall greatly improve the cloud modelling
process.

4 CLOUD MODELLING

The simplest cloud model is a plane or polygon. The result depends upon the rendering angle. The planar
cloud is ideal when rendering from a large distance at nearly a perpendicular angle. If rendering from the side the
texturing cannot compensate for the lack of thickness. We have developed a simple polygonal modelling approach.



It consists of two symmetric regular grids each one modeling one side of the cloud as shown in Figure 6. The
distance between symmetric grid points, or thickness, is proportional to the infrared channel number three of the
GOES satellite. In order to avoid cloud artifacts due to noise, the infrared image is smoothed slightly. Although,
typically, clouds are not symmetric the polygonal approach leads to a very realistic rendering, and we have found
it suitable for most instances.

Figure 6: Polygonal cloud modeling

The second factor that our cloud model takes into account is the transparency. Infrared information is used
again to model the transparency of the cloud. Infrared satellite images detect the thermal information radiating
from the earth. This energy is modulated by the cloud. Therefore, the infrared can be contrast enhanced to serve
as a transparency value for the texture map. The visible cloud images, after segmentation from sea, ground, and
snow, are used to texture map the polygons in the �nal rendering.

5 RENDERING SATELLITE AND MODEL DATA

The polygonal cloud model is used as a prop for the cloud image. This is done by texture mapping also known
as rubber sheeting or warping. The visible cloud image is used as a texture for both polygonal grids. Texture
mapping is a method of choosing the scan converted polygonal color by back projecting into a texture. Two
dimensional (2D) and three dimensional (3D) textures have been used to render photo realistic scenes, and for
scienti�c visualization. We apply 2D texture mapping. The �rst step is to de�ne the texture map coordinates
and their correspondence to the 3D world polygon coordinates. The registration process is done by geometrically
warping the satellite images to the same map space in which the data fusion is occurring. GOES satellite data
support routines for satellite navigation, or the geometric correction, are available from the University of Wisconsin
in a package called wiscnav. The wiscnav package can compute the coordinate conversions for a variety of satellite
images which have been converted to that format. Using wiscnav we warp the satellite image from satellite camera
coordinates. The next step is to warp the image to the appropriate map coordinates. We have experimented with
using Lambertian Conformal Conic because our collaborators at the Naval Postgraduate School compute their
3D models in this map projection. A collection of routines available in both C and Fortran from the USGS allows
conversion between the many available commonly used map projections for environmental data. We use these
routines to compute the inverse transformations to warp the satellite image from latitude, longitude coordinates
into Lambertian conformal conic. The General Cartographic Transformation Package (GCTP) is available via
ftp.29

We have implemented the texture mapping using OpenGL on Silicon Graphics workstations. An example
image of the �nal rendering is shown in Figure 7. Here clouds are shown rendered over the Caribbean Ocean and
the Gulf of Mexico. An arti�cial pseudocolored map is used as a background to provide a clear demarcation of the



underlying terrain for Florida, Cuba, Jamaica, etc. Using an Indigo2 Extreme provides interactive performance
in viewing these 3D cloud models, as there is hardware support for the texture mapping. We have also run the
rendering program on an SGI Reality Engine2 for even better performance.

Figure 7 shows the �nal 3-D cloud rendering. Given a polygonal model in world space, the visible texture map,
and the transparency texture map, our remotely sensed clouds may be rendered in many data fusion contexts
such as Spray.30 We plan to incorporate the multispectral code into our new visualization program SlugViz,
where the cloud tool will assist meteorologists by placing realistic clouds computed from remotely sensed data in
the visualization of their 3D meteorological models.

Figure 7: Final 3D cloud rendering

6 SUMMARY AND CONCLUSIONS

In this paper we have presented a method for segmenting GOES images that takes advantage of the mul-
tispectral data available. The �ve step process was overviewed: satellite and model collection, cloud segmen-
tation/extraction, cloud classi�cation, cloud modelling, and texture mapped 3D rendering. We described our
primary data feed for remotely sensed cloud imagery, the GOES-8 (GOES-East) data. Once the GOES-9 (GOES-
West) is available, we will have co-located 3D clouds (this paper) and 3D atmospheric models (NPS computed
NORAPS data) for e�ective truthing of model runs. We described our KLT processing to compute the princi-



ple components, and our choice of three out of �ve bands for segmentation. A morphologically processed 3D
histogram has its primary peaks extracted, which we use for clusters in the segmentation. We also described
cloud classi�cation, and possible approaches using GOES calibration data, lookup tables, and rule based systems.
In our implementation we use the infrared channel to estimate the thickness through a linear scaling. We also
modelled the clouds' transparency with an infrared channel. Our 3D polygonal cloud models are quite realistic,
and provide many parameters, such as thickness, elevation, and transparency that may be improved by meteorol-
ogists. The KLT processing in combination with the classi�cation, modelling, and rendering provide an e�cient
and straightforward means for 3D data/model fusion and visualization.

ACKNOWLEDGEMENTS

We would like to thank Professor Alex T. Pang and his visualization support. We would also like to thank
our collaborators at the Naval Postgraduate School including Professor Wendell Nuss.

7 REFERENCES

[1] D.D.E. Long, P.E. Mantey, C. M. Wittenbrink, T.R. Haining, and B.R. Montague. REINAS the real-time
environmental information network and analysis system. In Proceedings of COMPCON, pages 482{487, San
Francisco, CA, March 1995. IEEE.

[2] G. Fern�andez and C.M. Wittenbrink. Region based klt for multispectral image compression. In Proceedings

of EUSIPCO'96, submitted paper, Triste, Italy, September 1996.

[3] Jim Blinn. Light reection functions for simulations of clouds and dusty surfaces. In Computer Graphics,
pages 21{29, July 1982.

[4] J. T. Kajiya and B. Von Herzen. Ray tracing volume densities. In Proceedings of SIGGRAPH, pages 165{174,
July 1984.

[5] G.Y. Gardner. Visual simulation of clouds. In Proceedings of SIGGRAPH, pages 297{303, San Francisco,
July 1985. ACM.

[6] D. Ghazanfarpour and J.M. Dischler. Spectral analysis for automatic 3-d texture generation. Computers &
Graphics, 19(3):413{422, May{Jun 1995.

[7] Nelson Max. Computer animation of clouds. In Proceedings of Computer Animation '94, pages 167{174,
Geneva, Switzerland, May 1994. IEEE Comput. Soc. Press.

[8] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer

Graphics, 1(2):99{108, June 1995.

[9] Nelson Max, Roger Craw�s, and Dean Williams. Visualization for climate modeling. IEEE Computer

Graphics and Applications, 13(4):34{40, July 1993.

[10] James E. Peak and Paul M. Tag. Toward automated interpretation of satellite imagery for navy shipboard
applications. Bulletin of the American Meteorological Society, 73(7):995{1008, July 1992.

[11] T.A. Brubaker, R.J. Hounder, and T.H. Vonder Haar. Octree encoding for visualization of atmospheric
conditions and processes. Journal of Atmospheric and Oceanic Technology, 8(5):677{684, October 1991.

[12] Inc. Earth Watch Communications. Earth watch communications home page. World Wide Web URL:
http://www.earthwatch.com/index.html, 1995.



[13] Bruce J. Schachter, editor. Computer Image Generation. John Wiley & Sons, Inc., New York, 1983.

[14] BOEING. System description for the boeing image generator. In Contract No. F33657-84-C-2135, chapter
Document No D470-10004-1. The Boeing Company, Seattle, WA, 1985. One of the authors C.M. Wittenbrink
was a design engineer who worked on the development of this computer.

[15] Donna Coco. Real-time 3D games take o�. Computer Graphics World, 18(12):22{33, December 1995.

[16] J. Dane Clark. The GOES User's Guide. US Department of Commerce, Washington, D.C., 1983.

[17] Dennis Chester.
Dennis chester's home page. World Wide Web URL: http://climate.gsfc.nasa.gov/ chesters/Home.html,
1995.

[18] P.E. Mantey et al. REINAS: Real-time environmental information network and analysis system: Phase IV
- experimentation. Technical Report UCSC-CRL-94-43, CIS Board, University of California, Santa Cruz,
1994.

[19] Richard M. Hodur. Evaluation of a regional model with an update cycle. Monthly Weather Review,
115(11):2707{2718, November 1987.

[20] W. B. Rosbow. Measuring cloud properties from space: A review. Journal of Climate, 2:201{213, March
1989.

[21] A. Arking. Latitudinal distribution of cloud cover from tiros iii photographs. Science, (143):569{572, 1964.

[22] D.W. Reynolds and T.H. Vonder Haar. A bi-spectral method for cloud parameter determination. Monthly

Weather Review., (105):446{457, 1977.

[23] A. Arking and J.D. Childs. Retrieval of cloud parameters from multispectral satellite images. Journal of

Climate and Applied Meteorology, 24:322{333, 1985.

[24] Patrick J. Ready and Paul A. Wintz. Information extraction, snr improvement, and data compression in
multispectral imagery. IEEE Transactions on communications, COM-21(10):1123{1131, October 1973.

[25] M. Goldberg and S. Shlien. A clustering scheme for multispectral images. IEEE Transactions on systems,

man, and cybernetics, SMC-8(2):86{92, February 1978.

[26] John J. Hidor and John E. Oliver. Climatology: An Atmospheric Science. Macmillan Publishing Co., New
York, NY, 1993.

[27] M. D. King and et al. Remote sensing of cloud, aerosol, and water vapor properties from moderate resolution
imaging spectrometer. IEEE Trinsactions on Ceoscience and Remote Sensing, 30(1):2{27, January 1992.

[28] B.L. Lindner and R.G. Isaacs. Remote sensing of clouds by multispectral sensors. Applied Optics,
32(15):2744{2746, May 1993.

[29] the United States Geological Survey EROS Data Center. The general cartographic transformation package
(gctp): version c.1.2 2/95. Anonymous ftp: edcftp.cr.usgs.gov; cd pub/software/gctpc; bin; get gctpc.tar.Z,
1995.

[30] Alex Pang and Craig Wittenbrink. Spray rendering as a modular visualization environment. Computer

Graphics, 29(2):33 { 36, 1995.


