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Abstract. Surface classification and shading of three dimensional scalar data

sets are important enhancements for direct volume rendering (DVR). However,

unlike conventional surface rendering, DVR algorithms do not have explicit ge-

ometry to shade, making it difficult to perform comparisons. Furthermore, DVR,

in general, involves a complex set of parameters whose effects on a rendered im-

age are hard to compare. Previous work uses analytical estimations of the qual-

ity of interpolation, gradient filters, and classification. Typical comparisons are

done using side-by-side examination of rendered images. However, non-linear

processes are involved in the rendering pipeline and thus the comparison be-

comes particularly difficult. In this paper, we present a data level methodology

for analyzing volume surface classification and gradient filters. Users can more

effectively estimate algorithmic differences by using intermediate information.

Based on this methodology, we also present new data level metrics and examples

of analyzing differences in surface classification and gradient calculation. Please

refer to www.cse.ucsc.edu/research/avis/dvr.html for a full color version of

this paper.

1 INTRODUCTION

DVR algorithms generate images from volumetric data. Although DVR is a powerful

visualization tool, there are large numbers of parameters, and it is difficult to specify the

parameters needed to generate informative images. Furthermore, DVR algorithm varia-

tions can result in significant differences. Accurate, detailed, and objective comparisons

of these algorithmic differences is a very complex undertaking. In this paper, we limit

ourselves to comparisons of DVR algorithms of three dimensional scalar data only.

In volume rendering, we assign color and opacity to data for creation of images.

This process is referred to as classification, and is often specified by a transfer function.

If we assign surface materials properly and add shading using a lighting model, the per-

ception of the data can be greatly enhanced. However, sampled volumetric data do not

usually have explicit boundaries or geometries to be shaded. In this paper, we use the

term volume surface classification to denote the process of assigning surface material

to volumetric data values. The simplest classification method is to use a binary classi-

fication. In this case, we simply classify a data value as a surface material if it belongs

to the range of data values the user specified in a transfer function. However, more so-

phisticated classifiers than this are usually used. For example, Levoy [9] presented two



methods to display surfaces from volume data. One is a region boundary surface that

describes smooth transitions from one region to another, such as human skin, tissues,

and bones. The other is an isovalue contour surface that attempts to maintain a constant

thickness for the selected region. Most DVR algorithms usually use a binary classifier,

Levoy’s methods, or variations of these. The common idea is that the classification is a

function of the data value (either sampled or voxel value), the data range to be classified,

and the gradient vector.

Gradient vectors play an important role in both material classification and shading.

The central difference operator is a popular method of calculating gradient vectors.

There has been work to improve the quality of gradient filters. For example, instead

of using tri-linear interpolation and central difference operators, smoother and higher

order functions and their gradient filters have been used [1, 4, 11, 13]. Much of this work

performs frequency domain analysis, and proposes smoother functions (such as cubic

spline based filters).

Previous work provides metrics such as analytical estimation of error bounds for

reconstruction and gradient calculation in the spatial and the frequency domain. How-

ever, volume rendering comparison is often done at the image level using side-by-side

examination. Comparison is often done with simple viewing scenarios and some sum-

mary statistics from the rendered images. More in-depth comparisons are desirable for

practical use of volume rendering. They include analysis of why classifiers and gra-

dient calculation produce differences. However, DVR algorithms, in general, involve

non-linear processes whose results are hard to estimate analytically. Using some of the

basic summary metrics (such as RMSE) alone can often be misleading [15]. Instead,

Williams and Uselton [15] proposed to use more rigorous specifications and difference

metrics to compare the image quality of different DVR algorithms. Likewise, research

efforts have been directed toward analysis of volume rendered results with image level

metrics [14, 15, 3]. However, these comparison methods are generally qualitative com-

parisons of rendered images and do not provide metrics that specifically address the

need for measuring differences in surface classifications and gradient calculation. In

addition, image level metrics are collected from final rendering results only and thus

their capabilities are often limited.

In this paper, we present a new data level method to analyze differences in gradi-

ent filters and surface classification in DVR algorithms. We use intermediate informa-

tion generated in the rendering process and provide users with methods and metrics to

do in-depth comparison studies. In our earlier work [6, 7], we presented a data level

comparison framework and metrics for studying general differences among DVR al-

gorithms. We map a given algorithm to a base (or reference) algorithm and compare

the differences with the intermediate data generated in the rendering process. We used

both raycasting [7] and projection-based algorithms [6] and their corresponding metrics

based on the reference algorithm. In this paper, we introduce new metrics and visual-

ization methods that are useful for analyzing differences of gradient filters and surface

classifications as well as their interactions with other rendering parameters.

The outline of this paper is as follows: Section 2 surveys the volume surface classifi-

cations and gradient calculation methods. Section 3 gives an overview of our data level

comparison approach. Section 4 describes the metrics we developed and their visualiza-



tion methods. Section 5 presents how our metrics are used in comparison studies, and

section 6 concludes with our findings.

2 VOLUME SURFACE CLASSIFICATIONS AND GRADIENTS

In this section, we review the commonly used volume surface classification and gradient

calculation methods. We briefly discuss their computational differences with respect to

the volume rendering pipeline.

2.1 Surface classification

The simplest way to display surfaces in volume data is to assign a constant surface ma-

terial to a certain range of scalar data (see Figure 1(a)). This is often called binary clas-

sification. Assigning surface material implies mapping a data value to a set of values to

be used in shading. It includes opacity, color, and coefficients for a lighting model such

as Phong shading. We can define multiple ranges of data and assign different surfaces.

Some volume data do not necessarily have clear boundaries between regions. In fact,

volume data are discrete samples of continuous objects and we do not have enough

information to clearly visualize boundaries. Therefore, a classifier should generate a

smooth transition of opacities that represents the strength of the surface. There can be

significant artifacts with a binary classification because it makes an all-or-nothing de-

cision for a given range of data values only.

(b) Percentage volume

(c) Isovalue Surface (d) Region Boundary Surface
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Fig. 1. Volume surface classification depicted as functions of data and/or gradient magnitude.

A better way to calculate the surface strength is to make it proportional to the mag-

nitude of the gradient vector. Levoy used variable intensities of opacity around the iso-

value whose surface is being visualized (Isovalue Contour Surfaces [9], Figure 1(c)).



The idea is to specify a variable strength surface material that is dependent on both the

data value and the gradient magnitude. The user specifies an isovalue for the surface

that he or she wants to see. The closer the data value is to the isovalue, or the higher

the gradient magnitude is, the higher the assigned opacity will be. The thickness of the

surface around the given isovalue can also be controlled by a coefficient. Levoy used

this method to visualize surfaces in molecular electron density map data [9].

Another enhancement is to give smooth transitions between regions like skin, tis-

sue, and bone in the CT scanned human head data. One way is to give multiple ranges

of surface materials and classify volumes using a sum of the percentages of each range

[2]. The strength of the surface depends on this sum of percentage volumes and gra-

dient magnitudes (Figure 1(b)). Not shown in the figure is that the surface strength is

proportional to gradient magnitude. Another method called Region Boundary Surface

[9] (Figure 1(d)) also defines surface strengths as a function of data value and gradient

magnitude but uniformly over each range of data. Because the placement of the trans-

fer function in intensity and gradient magnitude is data dependent, researchers have

considered semi-automatic techniques [8].

2.2 Gradient calculation

In order to get an approximation of the surface normal for surface shading, gradients

are approximated using differences of neighboring data values. Gradient vectors also

play an important role in surface classification as well as shading. The Central dif-

ference operator [9] is the most common gradient calculation method that differences

neighboring data values in the x, y, z directions. The kernel operator for each dimension

is

D

x;y;z

= [�1; 0; 1℄ (1)

Another method, called the Intermediate Difference Operator [2], uses immediate neigh-

bors.

D

x;y;z

= [�1; 1℄ (2)

The differences in locations of gradient vectors calculated by these 2 operators are il-

lustrated in Figure 2 (in 1 dimension, for convenience).

CentDiff InterDiff

Fig. 2. Locations of the gradient vectors calculated by the Central Difference Operator (CentDiff)

and the Intermediate Difference Operator (InterDiff). Data locations are shown with squares while

the vectors are arrows.

Edge or boundary detection operators like Sobel operators can be used [8]. There are

other filters that use additional neighboring values such as higher order functions like



cubic splines [1, 13]. Möller et al. presented a flexible way of controlling continuity and

error estimations of the gradient filter functions [13]. In this paper, we use their filter

functions and other widely used operators to demonstrate our data level analysis.

2.3 Pipeline order

Surface classification methods and gradient operators can be used at different stages

of the volume rendering pipeline. We generally refer to this distinction as rendering

pipeline order. For example, material and surface classification can be done at the voxel

locations before the colors of voxels are interpolated at the sample locations (color in-

terpolation). The Isovalue Contour and Region Boundary Surface method usually uses

color interpolation. However, it is generally considered better to perform classifica-

tion after the data value is interpolated (data interpolation) even if color interpolation

gives smoother looking surfaces. Wittenbrink et al. studied the tradeoffs and presented

a method that used interpolation of opacity weighted colors [16]. The gradient vector

can also be used in different stages of the volume rendering pipeline. For example, the

gradient vector at the sample points can be interpolated from the gradient vectors that

are pre-calculated at the data (or voxel) locations. However, it is often considered better

to evaluate gradients directly at the sample locations. For example, we can use filter

functions that compute gradients at arbitrary locations using neighboring data values.

Möller et al. compared the numerical accuracy and the computational efficiency of these

schemes [12].

3 DATA LEVEL COMPARISON APPROACH

In this section, we describe our data level approach to the comparison of DVR algo-

rithms. The objective is that if two DVR images differ, then we want to perform more

in-depth analysis. For example, we want to identify the factors that contributed to the

differences. Data level methods incorporate intermediate and auxiliary information in

the rendering process and use them to generate a data level comparison using visual

mappings such as color-mapped images or surfaces. Figure 3(a) shows how one can

compare volume data, intermediate rendering data, or final rendered images. Because

of the wide variety of DVR algorithms, it is difficult to obtain registered intermediate

information for comparison. Hence, we compare algorithms by first mapping them to a

base algorithm and then deriving metrics from the base algorithm [6, 7] (Figure 3(b)).

We consider this algorithm mapping process as invertible in the sense that if al-

gorithm A can be simulated using a base algorithm, the base algorithm can also be

simulated using algorithm A as the base algorithm. Because of this, we can experiment

with multiple base algorithms and develop corresponding metrics. We presented an im-

age order, raycasting [7], and an object order, projection [6] algorithm based approach.

The comparison is as accurate as the available algorithm specifications. Therefore, in

any comparison studies of DVR algorithms, one should try to generate as complete a

specification as possible [15].

Depending on the base algorithm, we have different sets of rendering information

to be compared. Our previous work demonstrated that data level comparison metrics
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Fig. 3. (a) Types of comparison, and (b) basis for comparing algorithms. (a) highlights three

different areas where one can perform comparison: data, rendering information, and pixel values.

Data level comparison includes comparison of data and rendering information, while image level

comparison works with pixel values. (b) shows the architecture for comparing two different DVR

algorithms via a common base algorithm.

can show more detailed comparison than image level comparison. They help identify

sources of difference, and investigate interactions between rendering parameters with

much less trial and error. The focus of our previous work was more on comparing

differences attributed to basic parameters of DVR algorithms such as sampling patterns

and rendering pipeline order. In this paper, we focus on using new data level metrics to

compare surface classifications and gradient filters. Our flexible comparison framework

allows us to investigate interactions of gradient filters and classifications.

4 DATA LEVEL METRICS

In this section, we present our data level comparison metrics. These metrics are de-

signed to reveal information about the volume data as well as the DVR algorithms. In

this paper, we use 2 classes of metrics: threshold based metrics and iso-surface based

metrics. We introduced threshold based metrics in our previous work [6, 7]. In this pa-

per, we introduce new data level iso-surface based metrics and their visualization meth-

ods.

4.1 Threshold based metrics

We compute the following metrics at each pixel until user given threshold conditions

are satisfied. There is a large amount of intermediate rendering information that one can

use and some of them are described in [6, 7]. Here, we describe those that are used in

this paper. Each metric is calculated at each pixel. We visualize the result as 2D color-

mapped images or as 2.5D surfaces. The standard rainbow color-map is used in this



paper but one can experiment with other types of color-maps as well. In this paper, we

use the notation, such as, metri
A
�=0:95

to mean the value of the metric in order for

algorithm A to accumulate an opacity of 0.95. If we calculate the difference of these

metrics between algorithm A and B, we use the notation metri

A;B

�=0:95

. We give a brief

description of each metric next.

1. Number of samples (NS).

Different algorithms use different sampling procedures such as different step sizes

when sampling at regular intervals along the ray, or sampling only at cell face in-

tersections. Even with the same sampling procedures, the number of samples used

along each ray may vary depending on other parameters. In addition, since dif-

ferent parts of the data accumulate opacities at different rates, the number of data

samples that each ray used provides information regarding the amount of data that

contributed to each pixel in the resulting image.

2. Volume or Eye Distance (VD or ED). This metric measures the distance the ray

traveled into the volume when it reached a specified threshold condition at each

pixel. Distance can be measured from the user’s eye or from the bounding box of

the data volume (along the viewing direction). We refer to these metrics as eye

distance (ED) and volume distance (VD) respectively. These metrics provide the

viewer with information on how far the ray penetrated the volume independent of

how many samples are used along each ray.

3. Correlation (Corr).

We calculate the correlation between two sample vectors generated by two differ-

ent algorithms along identical viewing directions for each pixel. Here, we treat the

samples (in red, green, blue, and opacity channel separately) from each algorithm

as a random variable. The correlation metric gives us an indication of the linear

relationship or the dependence between the two random variables corresponding

to two different rays. Since DVR algorithms assume continuity in the data volume

and since we are focusing on regularly gridded data sets, it is reasonable to as-

sume some degree of dependence between corresponding pairs of rays. We make

the number samples identical by either re-sampling or additional sampling after

threshold conditions are met. Details of this issue can be found in our previous

work [6, 7].

4.2 Iso-surface based metrics

Threshold based metrics are related to the intermediate rendering information that con-

tributed to the pixel values. On the other hand, iso-surface based metrics are derived

from the local surrounding data. We compute and collect rendering information at the

surface on which data values are identical in the volume. The values of the data (iso-

values) to be examined are specified by user. The intermediate rendering information is

evaluated at the vertices of the iso-surface polygons as the given algorithm would do.

For example, if the algorithm uses data interpolation, the data value is interpolated first

and then classified to obtain RGB colors and opacity. If it uses color interpolation, the

pre-classified colors of the surrounding voxels are interpolated. Note that because these

metrics are evaluated on the iso-surface, they are different from the values generated by



the actual DVR algorithm. However, they compare the general characteristics of spe-

cific parts of an algorithm (such as gradient calculation method) independently from

other parameters (such as sampling pattern). We used the Marching Cubes algorithm

[10] for generation of iso-surfaces, but one may experiment with other algorithms.

Basic Metrics

1. Sampled Color Intensities

Magnitudes of sampled RGB and opacity values at the vertices of the iso-surface.

2. Dot Product

This metric compares gradient vectors computed on the iso-surface using two dif-

ferent DVR algorithms. The dot product of a pair of vectors is computed at each

vertex of the tessellated iso-surface. If gradients are to be interpolated (such as for

use by the central difference operator), the vectors are interpolated at the vertices.

If gradients are to be evaluated by direct filtering functions, they are re-evaluated at

the vertices before calculating dot products.

3. Gradient Magnitude

Gradient magnitude is an important value in volume classification because it is

related to the strength of the surface.

4. Strength of Surface

In DVR, the strength of surface [2] is given by the opacity. The opacity is specified

as a function of the data value and gradient magnitude. We define the strength of

surface metric as the opacity value divided by the maximum surface strength spec-

ified by the given surface classification scheme. Unlike simply comparing opacity,

this metric gives the relative strength of the surface produced by the different clas-

sification schemes.

5. Ambient, Diffuse and Specular Color Intensities

These metrics measure the contributions of the classification and gradient vectors

to different color components given a lighting model.

16 32 64 1003 3 3 3

Fig. 4. Sample visualizations of pseudo-curvature metrics on an iso-surface of the Marschner-

Lobb data. Four different resolutions, from 16

3 to 100

3 , of the data are shown.

Pseudo-curvature Metrics We define pseudo-curvature as the perturbations (or varia-

tions) of the basic metrics around the vertices of polygons on the iso-surface. Note that



we not only calculate this metric with gradient vectors but also do so on other rendering

information such as color intensities and gradient magnitude.

An accurate method would be to calculate the curvature around all edges of a vertex.

In this paper, however, for a convenience and speed, we simply calculate the variations

of rendering information within a polygon (a triangular patch in our case). Therefore,

the pseudo-curvature value ps is

ps =

abs(M

0

�M

1

) + abs(M

1

�M

2

) + abs(M

2

�M

0

)

area+ �

(3)

whereM
i

is the basic metric value at the ith vertex. It is divided by the area of the poly-

gon plus a constant � to prevent ps from becoming too large. For �, we use the average

area of the triangular patches on the iso-surface. Figure 4 is a set of sample visualiza-

tions of a pseudo-curvature metric on 4 different resolutions of the Marschner-Lobb

data. They are calculated using gradient vectors computed using the central difference

operator.

5 RESULTS

In this section, we give examples of applying our methodology and metrics to analyze

differences in volume rendering algorithms. Each example shows more detailed analy-

sis than possible with image level comparison.

With the Salt Dome Data example (Section 5.1), we show how our data level ap-

proach can help to find a more important source of differences among multiple param-

eters. With the MRI Brain data (Section 5.2), our example shows data level analysis

yields different results from image level analysis. Data level analysis reveals the poten-

tial differences and serves as a starting point for the further analysis such as finding the

source of differences. In Section 5.3, we attempt to analyze sources of differences in

gradient calculation methods with our metrics and Marschner and Lobb’s data [11].

5.1 Salt Dome Data

Figure 5 shows two rendered images of a salt dome data set and the difference im-

age. The size of the original data is 676� 676� 200 but the images are renderings of a

(676�20�200) sub-volume where the salt dome feature is very prominent. The original

seismic data were provided by the Sandia National Laboratory and then processed by

the Modeling and Imaging Laboratory (www.es.ucsc.edu/˜acti) at UCSC. The seis-

mic data are combined into one geological data set using seismic imaging techniques

[5]. This particular data set shows a large salt dome together with geological layers.

Data range in value from [-273.953, 207.951]. In addition, the data contain significant

levels of noise and are very sensitive to the surface classification algorithm.

Both algorithms that generated renderings A and B in Figure 5 use the Region

Boundary Surface classification. The two algorithms are identical except for the gradi-

ent calculations and opacity mapping from gradient magnitudes. The difference image

in Figure 5 shows bigger differences near the salt dome boundaries and other geological



A B jA-Bj

Fig. 5. Two rendered images of the salt dome data and their difference image. The images are

rendered from a 676 � 20 � 200 sub-volume of the data that shows the salt dome structure

prominently. Data is courtesy of Sandia National Laboratory and the Modeling and Imaging

Laboratory at UCSC.

layers. Figure 11 (see Appendix) shows NS and NSD (Number of Samples Differences)

using a threshold opacity of 0.8. It shows that we generally have a higher number of

samples in A than B, for the respective runs to accumulate to an opacity of 0.8. In NSD

between A and B, we can observe higher differences at the boundaries. This suggests

that differences of opacity at the boundaries are larger. We further investigate the pair

using iso-surface based metrics. Figure 12 (a) and (b) (see Appendix) show the dot

product and magnitude differences of the gradient vectors used by algorithms A and B.

Little difference in directions (mostly high values in the dot products, shown in Figure

12(a)) can be observed. Their magnitudes are also generally similar except around the

boundary that surrounds the large salt region (mountain-shaped region in the middle).

Figure 12(c) shows very low differences in color (or grey-scale) intensities. However,

the strength of surface metric (see Figure 12(d)) shows large differences in most of the

iso-surface area.

From the metrics we analyzed, we can make the following analysis. The image

level differences confirm that we have larger differences along the structure boundary.

Our data level analysis shows the difference stemmed primarily from the differences in

opacity. Differences in color intensity are low because there are no significant differ-

ences in the directions of the gradients. Opacity (or surface strength) differences can

be affected by both gradient magnitudes and their opacity mapping. There are very low

differences in gradient magnitudes. Therefore, most of the differences must have come

from the opacity mapping. However, near the boundary of the salt region, the differ-

ences in the gradient magnitude also contributed to the final image differences. The

visualization users, therefore, can adjust these parameters depending on their needs.

This example illustrates how we can analyze the contribution of each parameter when

algorithms differ in more than one rendering parameter.

5.2 MRI Brain Data

The size of the MRI brain data is 128 � 128 � 84 and is a down sampled version of

the MRI brain data from the University of North Carolina at Chapel Hill. Three images

are generated using (A) binary, (B) Region Boundary Surface, and (C) Isovalue Region

Surface classification schemes. All other rendering parameters are identical. In Figure

6, algorithms B and C are compared to the reference algorithm A. The difference images



(jA�Bj, jA�Cj) of Figure 6 show that jA�Cj has prominent differences around the

silhouette of the head. The differences are probably due to the parameter that controls

the thickness of the Isovalue Surface classification scheme [9]. However, algorithm C

shows generally lower differences in most other areas (face and open brain). The RMSE

(Root Mean Square Error) readings are also lower in jA�Cj than jA�Bj (see caption

in the Figure 6). However, the NSD (Number of samples) metrics in Figure 6 show that

the classification used in C has more potential for difference. The 3rd column of Figure

6 shows that until the accumulated opacity is 0.6 at each pixel, both algorithms B and C

needed a relatively similar number of samples (NSD

A;B

�=0:6

and NSD

A;C

�=0:6

). However,

in the 2nd column, the NSD

A;C

�=0:9

metric shows that algorithm C needed large differ-

ences in the number of samples to accumulate an opacity of 0.9. The last column is the

height surface visualizations of the NSD

�=0:9

metrics. Metrics values are mapped to

height of the 2 dimensional mapping and visualized in 3 dimensions. Our simple NSD

metrics show different results from what the conventional image level metrics (RMSE)

show. This difference results because the Isovalue Surface classification of algorithm C

uses only one data value and a thickness control while algorithms A and B are defined

over a range of data values. In fact, algorithm C’s classification follows the facial sur-

face profile while the classifications of A and B have relatively homogeneous insides,

which are shown by theNSD

�=0:9

metrics. In this example, our data level analysis lets

users investigate the potential differences of classification schemes. The analysis also

points to a different conclusion than would have been drawn using simple comparisons

of differences in the final rendered images. Without data level analysis, one would think

algorithm C is closer to A (reference). Data level analysis shows algorithm C has more

potential difference than algorithm B. It serves as a good starting point for a further

analysis.

5.3 Marschner-Lobb

Marschner and Lobb’s data [11] has often been used as a standard to compare the qual-

ity of reconstruction and gradient filters. One of its advantages is that it is an analytic

data set and can therefore compare different algorithms by measuring their error val-

ues. However, volume rendering results using this data set are often compared using

simple side-by-side comparisons. Figure 7 shows volume rendered images of a 100

3

Marschner-Lobb data set using different gradient filter functions. All other parameters

such as classification and sampling patterns are identical. We use a raycasting base algo-

rithm with back-to-front compositing. Algorithm A uses central difference while B uses

the intermediate difference operator. Algorithm C uses a higher order gradient filter that

is C2 continuous with 3rd order error estimations [13]. We used C

2 3EF first deriva-

tive filter functions as defined in [13]. From these images alone, not all differences are

obvious.

Difference images in Figure 9(a) shows that there are higher differences in jA�Bj

and the differences in jA � Cj are lower and tend to be more uniform. Figure 9 (b) -

(d) are data level metrics with threshold condition of accumulated opacity value 0.95.

Looking at the differences in eye distances metric to accumulate opacity 0.95 at each

pixel, ED
A;B

�=0:95

, is much more uniform than ED
A;C

�=0:95

. However, looking at Figure

9 (c) and (d), sample colors and opacities are much more correlated for A vs C than
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Fig. 6. Image level differences and NSD metrics. RMSE statistics for jA� Bj and jA � Cj are

15.1171 and 11.0733 (in the scale of 0.0 to 255.0) respectively (first column). NSD (Number of

Samples Difference) metrics between A,B and A,C with threshold opacity 0.9 and 0.6 are shown

with 2 dimensional color-mappings (second and third column). Images in the fourth column are

the height surface visualizations of NSD
A;B

�=0:9

and NSD
A;C

�=0:9

A vs B. The circular lines indicate areas where rays passed through the thin peaks of

the wavy surfaces. The lower correlation in RGB color channels are not surprising. The

color values depend primarily on data values with some alterations from shading cal-

culations using the gradient vectors. Recall that the opacity value is a function of both

the data value and gradient magnitude. Therefore, the color values tend to vary a lot

while the opacity values tend to be more uniform on the surface. The correlation met-

rics suggest that algorithm C (higher order filter) behaved more similarly to A (central

difference operator) than B (intermediate difference operator). However, the eye dis-

tance metrics suggest that the differences in jA�Cj might stem more from differences

in opacity. It subsequently suggests the differences came from gradient magnitudes that

affect opacity (or surface strength) rather than direction. Note that the only difference

in algorithms A, B, and C is the gradient vector calculation method. Next, we analyze

this case further with our iso-surface based metrics.

Figures 8 and 10 show iso-surface based difference metrics. The metrics are eval-

uated on an iso-surface of 0.5. All metrics, except the dot product, are visualized in

separate color-mapping scales in order to bring out the spatial patterns in the images.

For this reason, their visualizations might be misleading but all difference metrics are

much higher in A vs B than A vs C based on the value ranges specified in Figure 10.

Furthermore, they provide some explanations for the content of the differences. Dot

product image of A � B, seen in Figure 10(a), shows a slightly less uniform distri-

bution (note the fan shaped patterns near the center of the data). On the other hand,



directions of gradient vectors for A and C are almost the same. Similar observations

can be made using the color intensity differences in Figure 10(c). Gradient magnitude

differences in (b) and surface strength differences in (d) show that A vs B and A vs C

have opposite patterns. We can also observe that most of the differences in jA�Cj are

from gradient magnitude (and subsequently, its surface strength) while differences in

jA �Bj are combinations of gradient magnitude and directions. Another thing we can

observe is the patterns of the difference visualizations although they do not give direct

explanations of algorithm differences. For example, the region where there are higher

differences in one has lower differences in another, except the center region where both

have lower differences. Figure 8 shows pseudo-curvature metrics using gradient direc-

tion and magnitude. In (b), differences in the pseudo-curvature of gradient magnitude

show different patterns in A vs B than in A vs C. Figure 8(a) shows that we simply have

a higher pseudo-curvature of gradient vector where the surface has higher curvature.

In this example, we found the higher order filter (algorithm C) is closer to the central

difference operator (algorithm A) when compared to the intermediate difference oper-

ator (algorithm B). Threshold based metrics show highly correlated sample colors in A

vs C. They are consistent with the difference image statistics. However, our iso-surface

based metrics show that differences in jA � Cj stem more from gradient magnitude

differences. In jA � Bj, the difference is attributed to both magnitude and direction of

the gradient vectors (with a higher difference range). These metrics partially explain

the irregular pattern of the image difference of jA � Bj. jA � Cj is relatively more

uniform because the differences stem from surface strength only (with a smaller differ-

ence range). Patterns of differences in the iso-surface based metrics of A vs B resemble

patterns in the image differences, which tells us that these are good metrics to explain

the differences in images. These are useful details that may not be obtained easily by an

image level analysis. From experiments like this, volume rendering users can learn to

properly adjust other rendering parameters such as mapping from gradient magnitude

to surface strength.

A B C

Fig. 7. Marschner-Lobb data rendered with 3 different gradient calculation methods: (A) central

differences, (B) intermediate difference, and (C) higher order filters with C2 continuity (C2, 3

EF)).



(b) gradient magnitude curvature diff

A vs B A vs C

(a) gradient curvature differences

A vs B A vs C

Fig. 8. Comparisons of pseudo-curvature metrics. The minimum and maximum values for color-

mapping are: (a) [0, 3.69] (b) [0, 0.095] for A vs B and (b) [0, 3.84] (b) [0, 0.005] for A vs

C.

6 CONCLUSION

We focused on the comparison of different surface classification and gradient calcula-

tion methods in this paper. The image level approach has inherent limitations because it

analyzes the final rendering results only. The data level approach has significant advan-

tages because it utilizes intermediate rendering information. We presented an overview

of our data level approach for comparing DVR algorithms and described its advantages

over the image level approach. We presented new data level metrics that can be used

to do this task quantitatively and qualitatively. We described details of threshold based

metrics and iso-surface based metrics, and gave 3 examples demonstrating how they are

used to analyze surface classification and gradient calculation methods in a data level

fashion. With the geological data, we demonstrated how our metrics helped isolate an

important parameter when two algorithms differ in multiple rendering parameters. In

the second example using the MRI human brain data, our data level metrics revealed

potential differences that refute the conclusions that would have been arrived at with

image level analysis only. In the third example with the Marschner-Lobb data, our ap-

proach was able to perform more in-depth analysis of the gradient calculation functions.

In this paper, we focus on comparison analysis that can hopefully answer questions such

as why differences exist in DVR algorithms with a certain set of rendering parameters.

It is up to the developer to determine the appropriate trade-offs for their applications

and datasets. In summary, the data level approach coupled with the appropriate metric

is a significant improvement over the image level approach for comparing the effects of

different surface classifications and gradient calculation methods in volume rendering.
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(b) eye distance difference

(c) correlation (alpha)

(d) correlation (rgb)

0

26.0

0

34.0

1.0

−0.75

1.0

−0.55

Fig. 9. Difference images and data level met-

rics of A vs B and A vs C. The RMSE val-

ues are 13.0825 for jA � Bj and 11.0311 for

jA � Cj. Color-mappings of data level met-

rics (ED, Corr) use the standard rainbow color-

map.

A vs B A vs C

(a) dot product

(b) gradient magnitude differences

(c) color differences

(d) surface strength differences

Fig. 10. Comparisons using basic iso-surface

based metrics. The minimum and maximum

values for color-mapping are (a) [-1.0, 1.0], (b)

[0, 0.06], (c) [0, 0.554], (d) [0, 0.044], for A

vs B and (b) [-1.0, 1.0], (b) [0, 0.02], (c) [0,

0.254], (d) [0, 0.014] for A vs C.
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12. Torsten Möller, Raghu Machiraju, Klaus Müller, and Roni Yagel. A comparison of normal

estimation schemes. In Proceedings of the IEEE Conference on Visualization 1997, pages

19–26, October 1997.
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Fig. 11. Visualizations of NS (Number of Sam-

ples) and NSD (NS Differences).
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(b) Gradient Magnitude Differences

(c) Sample Color Differences

(d) Surface Strength Differences
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Fig. 12. Analysis of the salt dome data via iso-

surface based metrics.


