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Abstract

Surface classification and shading of three dimensional scalar
data sets are important enhancements for direct volume rendering
(DVR). However, unlike conventional surface rendering, DVR al-
gorithms do not have explicit geometry to shade, making it difficult
to perform comparisons. Furthermore, DVR, in general, involves a
complex set of parameters whose effects on a rendered image are
hard to compare. Previous work uses analytical estimations of the
quality of interpolation, gradient filters, and classification. Typical
comparisons are done using side-by-side examination of rendered
images. However, non-linear processes are involved in the render-
ing pipeline and thus the comparison becomes particularly difficult.
In this paper, we present a data level methodology for analyzing
volume surface classification and gradient filters. Users can more
effectively estimate algorithmic differences by using intermediate
information. Based on this methodology, we also present new data
level metrics and examples of analyzing differences in surface clas-
sification and gradient calculation.

1 INTRODUCTION

DVR algorithms generate images from volumetric data. Although
DVR is a powerful visualization tool, there are large numbers of pa-
rameters, and it is difficult to specify the parameters needed to gen-
erate informative images. Furthermore, DVR algorithm variations
can result in significant differences. Accurate, detailed, and objec-
tive comparisons of these algorithmic differences is a very complex
undertaking. In this paper, we limit ourselves to comparisons of
DVR algorithms of three dimensional scalar data only.

In volume rendering, we assign color and opacity to data for cre-
ation of images. This process is referred to as classification, and is
often specified by a transfer function. If we assign surface materi-
als properly and add shading using a lighting model, the perception
of the data can be greatly enhanced. However, sampled volumet-
ric data do not usually have explicit boundaries or geometries to be
shaded. In this paper, we use the term volume surface classification
to denote the process of assigning surface material to volumetric
data values. The simplest classification method is to use a binary
classification. In this case, we simply classify a data value as a
surface material if it belongs to the range of data values the user
specified in a transfer function. However, more sophisticated clas-
sifiers than this are usually used. For example, Levoy [9] presented
two methods to display surfaces from volume data. One is a region
boundary surface that describes smooth transitions from one region
to another, such as human skin, tissues, and bones. The other is an
isovalue contour surface that attempts to maintain a constant thick-
ness for the selected region. Most DVR algorithms usually use a
binary classifier, Levoy’s methods, or variations of these. The com-
mon idea is that the classification is a function of the data value
(either sampled or voxel value), the data range to be classified, and

the gradient vector.

Gradient vectors play an important role in both material classi-
fication and shading. The central difference operator is a popular
method of calculating gradient vectors. There has been work to im-
prove the quality of gradient filters. For example, instead of using
tri-linear interpolation and central difference operators, smoother
and higher order functions and their gradient filters have been used
[1, 4, 11, 13]. Much of this work performs frequency domain anal-
ysis, and proposes smoother functions (such as cubic spline based
filters).

Previous work provides metrics such as analytical estimation of
error bounds for reconstruction and gradient calculation in the spa-
tial and the frequency domain. However, volume rendering compar-
ison is often done at the image level using side-by-side examination.
Comparison is often done with simple viewing scenarios and some
summary statistics from the rendered images. More in-depth com-
parisons are desirable for practical use of volume rendering. They
include analysis of why classifiers and gradient calculation produce
differences. However, DVR algorithms, in general, involve non-
linear processes whose results are hard to estimate analytically. Us-
ing some of the basic summary metrics (such as RMSE) alone can
often be misleading [15]. Instead, Williams and Uselton [15] pro-
posed to use more rigorous specifications and difference metrics
to compare the image quality of different DVR algorithms. Like-
wise, research efforts have been directed toward analysis of volume
rendered results with image level metrics [14, 15, 3]. However,
these comparison methods are generally qualitative comparisons of
rendered images and do not provide metrics that specifically ad-
dress the need for measuring differences in surface classifications
and gradient calculation. In addition, image level metrics are col-
lected from final rendering results only and thus their capabilities
are often limited.

In this paper, we present a new data level method to analyze dif-
ferences in gradient filters and surface classification in DVR algo-
rithms. We use intermediate information generated in the rendering
process and provide users with methods and metrics to do in-depth
comparison studies. In our earlier work [6, 7], we presented a data
level comparison framework and metrics for studying general dif-
ferences among DVR algorithms. We map a given algorithm to a
base (or reference) algorithm and compare the differences with the
intermediate data generated in the rendering process. We used both
raycasting [7] and projection-based algorithms [6] and their corre-
sponding metrics based on the reference algorithm. In this paper,
we introduce new metrics and visualization methods that are useful
for analyzing differences of gradient filters and surface classifica-
tions as well as their interactions with other rendering parameters.

The outline of this paper is as follows: Section 2 surveys the vol-
ume surface classifications and gradient calculation methods. Sec-
tion 3 gives an overview of our data level comparison approach.
Section 4 describes the metrics we developed and their visualiza-
tion methods. Section 5 presents how our metrics are used in com-
parison studies, and section 6 concludes with our findings.
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Figure 1: Volume surface classification depicted as functions of
data and/or gradient magnitude.

2 VOLUME SURFACE CLASSIFICA-
TIONS AND GRADIENTS

In this section, we review the commonly used volume surface clas-
sification and gradient calculation methods. We briefly discuss
their computational differences with respect to the volume render-
ing pipeline.

2.1 Surface classification

The simplest way to display surfaces in volume data is to assign
a constant surface material to a certain range of scalar data (see
Figure 1(a)). This is often called binary classification. Assigning
surface material implies mapping a data value to a set of values to
be used in shading. It includes opacity, color, and coefficients for
a lighting model such as Phong shading. We can define multiple
ranges of data and assign different surfaces. Some volume data do
not necessarily have clear boundaries between regions. In fact, vol-
ume data are discrete samples of continuous objects and we do not
have enough information to clearly visualize boundaries. There-
fore, a classifier should generate a smooth transition of opacities
that represents the strength of the surface. There can be signifi-
cant artifacts with a binary classification because it makes an all-
or-nothing decision for a given range of data values only.

A better way to calculate the surface strength is to make it pro-
portional to the magnitude of the gradient vector. Levoy used vari-
able intensities of opacity around the isovalue whose surface is be-
ing visualized (Isovalue Contour Surfaces [9], Figure 1(c)). The
idea is to specify a variable strength surface material that is depen-
dent on both the data value and the gradient magnitude. The user
specifies an isovalue for the surface that he or she wants to see. The
closer the data value is to the isovalue, or the higher the gradient
magnitude is, the higher the assigned opacity will be. The thick-
ness of the surface around the given isovalue can also be controlled
by a coefficient. Levoy used this method to visualize surfaces in
molecular electron density map data [9].

Another enhancement is to give smooth transitions between re-
gions like skin, tissue, and bone in the CT scanned human head
data. One way is to give multiple ranges of surface materials and
classify volumes using a sum of the percentages of each range [2].

The strength of the surface depends on this sum of percentage vol-
umes and gradient magnitudes (Figure 1(b)). Not shown in the fig-
ure is that the surface strength is proportional to gradient magni-
tude. Another method called Region Boundary Surface [9] (Fig-
ure 1(d)) also defines surface strengths as a function of data value
and gradient magnitude but uniformly over each range of data. Be-
cause the placement of the transfer function in intensity and gradi-
ent magnitude is data dependent, researchers have considered semi-
automatic techniques [8].

2.2 Gradient calculation

In order to get an approximation of the surface normal for surface
shading, gradients are approximated using differences of neighbor-
ing data values. Gradient vectors also play an important role in
surface classification as well as shading. The Central difference
operator [9] is the most common gradient calculation method that
differences neighboring data values in the x, y, z directions. The
kernel operator for each dimension is

D

x;y;z

= [�1; 0; 1℄ (1)

Another method, called the Intermediate Difference Operator [2],
uses immediate neighbors.

D

x;y;z

= [�1; 1℄ (2)

The differences in locations of gradient vectors calculated by these
2 operators are illustrated in Figure 2 (in 1 dimension, for conve-
nience).

CentDiff InterDiff

Figure 2: Locations of the gradient vectors calculated by the Cen-
tral Difference Operator (CentDiff) and the Intermediate Difference
Operator (InterDiff). Data locations are shown with squares while
the vectors are arrows.

Edge or boundary detection operators like Sobel operators can
be used [8]. There are other filters that use additional neighbor-
ing values such as higher order functions like cubic splines [1, 13].
Möller et al. presented a flexible way of controlling continuity and
error estimations of the gradient filter functions [13]. In this pa-
per, we use their filter functions and other widely used operators to
demonstrate our data level analysis.

2.3 Pipeline order

Surface classification methods and gradient operators can be used
at different stages of the volume rendering pipeline. We generally
refer to this distinction as rendering pipeline order. For example,
material and surface classification can be done at the voxel locations
before the colors of voxels are interpolated at the sample locations
(color interpolation). The Isovalue Contour and Region Boundary
Surface method usually uses color interpolation. However, it is gen-
erally considered better to perform classification after the data value
is interpolated (data interpolation) even if color interpolation gives
smoother looking surfaces. Wittenbrink et al. studied the tradeoffs
and presented a method that used interpolation of opacity weighted
colors [16]. The gradient vector can also be used in different stages
of the volume rendering pipeline. For example, the gradient vector



at the sample points can be interpolated from the gradient vectors
that are pre-calculated at the data (or voxel) locations. However, it
is often considered better to evaluate gradients directly at the sam-
ple locations. For example, we can use filter functions that com-
pute gradients at arbitrary locations using neighboring data values.
Möller et al. compared the numerical accuracy and the computa-
tional efficiency of these schemes [12].

3 DATA LEVEL COMPARISON AP-
PROACH

In this section, we describe our data level approach to the compar-
ison of DVR algorithms. The objective is that if two DVR images
differ, then we want to perform more in-depth analysis. For exam-
ple, we want to identify the factors that contributed to the differ-
ences. Data level methods incorporate intermediate and auxiliary
information in the rendering process and use them to generate a
data level comparison using visual mappings such as color-mapped
images or surfaces. Figure 3(a) shows how one can compare vol-
ume data, intermediate rendering data, or final rendered images.
Because of the wide variety of DVR algorithms, it is difficult to ob-
tain registered intermediate information for comparison. Hence, we
compare algorithms by first mapping them to a base algorithm and
then deriving metrics from the base algorithm [6, 7] (Figure 3(b)).
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Figure 3: (a) Types of comparison, and (b) basis for comparing
algorithms. (a) highlights three different areas where one can per-
form comparison: data, rendering information, and pixel values.
Data level comparison includes comparison of data and rendering
information, while image level comparison works with pixel val-
ues. (b) shows the architecture for comparing two different DVR
algorithms via a common base algorithm.

We consider this algorithm mapping process as invertible in the
sense that if algorithm A can be simulated using a base algorithm,
the base algorithm can also be simulated using algorithm A as the
base algorithm. Because of this, we can experiment with multiple
base algorithms and develop corresponding metrics. We presented
an image order, raycasting [7], and an object order, projection [6]
algorithm based approach. The comparison is as accurate as the
available algorithm specifications. Therefore, in any comparison
studies of DVR algorithms, one should try to generate as complete
a specification as possible [15].

Depending on the base algorithm, we have different sets of ren-
dering information to be compared. Our previous work demon-
strated that data level comparison metrics can show more de-
tailed comparison than image level comparison. They help identify
sources of difference, and investigate interactions between render-
ing parameters with much less trial and error. The focus of our
previous work was more on comparing differences attributed to ba-
sic parameters of DVR algorithms such as sampling patterns and
rendering pipeline order. In this paper, we focus on using new data
level metrics to compare surface classifications and gradient filters.
Our flexible comparison framework allows us to investigate inter-
actions of gradient filters and classifications.

4 DATA LEVEL METRICS

In this section, we present our data level comparison metrics. These
metrics are designed to reveal information about the volume data
as well as the DVR algorithms. In this paper, we use 2 classes of
metrics: threshold based metrics and iso-surface based metrics. We
introduced threshold based metrics in our previous work [6, 7]. In
this paper, we introduce new data level iso-surface based metrics
and their visualization methods.

4.1 Threshold based metrics

We compute the following metrics at each pixel until user given
threshold conditions are satisfied. There is a large amount of inter-
mediate rendering information that one can use and some of them
are described in [6, 7]. Here, we describe those that are used in this
paper. Each metric is calculated at each pixel. We visualize the re-
sult as 2D color-mapped images or as 2.5D surfaces. The standard
rainbow color-map is used in this paper but one can experiment
with other types of color-maps as well. In this paper, we use the
notation, such as, metriA

�=0:95

to mean the value of the metric in
order for algorithm A to accumulate an opacity of 0.95. If we cal-
culate the difference of these metrics between algorithm A and B,

we use the notation metri
A;B

�=0:95

. We give a brief description of
each metric next.

1. Number of samples (NS).

Different algorithms use different sampling procedures such
as different step sizes when sampling at regular intervals along
the ray, or sampling only at cell face intersections. Even with
the same sampling procedures, the number of samples used
along each ray may vary depending on other parameters. In
addition, since different parts of the data accumulate opacities
at different rates, the number of data samples that each ray
used provides information regarding the amount of data that
contributed to each pixel in the resulting image.

2. Volume or Eye Distance (VD or ED). This metric measures
the distance the ray traveled into the volume when it reached
a specified threshold condition at each pixel. Distance can be
measured from the user’s eye or from the bounding box of
the data volume (along the viewing direction). We refer to
these metrics as eye distance (ED) and volume distance (VD)
respectively. These metrics provide the viewer with informa-
tion on how far the ray penetrated the volume independent of
how many samples are used along each ray.

3. Correlation (Corr).

We calculate the correlation between two sample vectors gen-
erated by two different algorithms along identical viewing di-
rections for each pixel. Here, we treat the samples (in red,
green, blue, and opacity channel separately) from each algo-
rithm as a random variable. The correlation metric gives us
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Figure 4: Sample visualizations of basic iso-surface based metrics
for the MRI scanned human brain data; (a) color intensities (grey
scale) (b) gradient magnitudes and (c) dot products of two different
gradient vectors (6 point and 27 point central difference operators
in this case). All metric values are mapped with a standard rainbow
color-map.

an indication of the linear relationship or the dependence be-
tween the two random variables corresponding to two differ-
ent rays. Since DVR algorithms assume continuity in the data
volume and since we are focusing on regularly gridded data
sets, it is reasonable to assume some degree of dependence be-
tween corresponding pairs of rays. We make the number sam-
ples identical by either re-sampling or additional sampling af-
ter threshold conditions are met. Details of this issue can be
found in our previous work [6, 7].

4.2 Iso-surface based metrics

Threshold based metrics are related to the intermediate rendering
information that contributed to the pixel values. On the other hand,
iso-surface based metrics are derived from the local surrounding
data. We compute and collect rendering information at the surface
on which data values are identical in the volume. The values of
the data (isovalues) to be examined are specified by user. The in-
termediate rendering information is evaluated at the vertices of the
iso-surface polygons as the given algorithm would do. For exam-
ple, if the algorithm uses data interpolation, the data value is inter-
polated first and then classified to obtain RGB colors and opacity.
If it uses color interpolation, the pre-classified colors of the sur-
rounding voxels are interpolated. Note that because these metrics
are evaluated on the iso-surface, they are different from the values
generated by the actual DVR algorithm. However, they compare
the general characteristics of specific parts of an algorithm (such as
gradient calculation method) independently from other parameters
(such as sampling pattern). We used the Marching Cubes algorithm
[10] for generation of iso-surfaces, but one may experiment with
other algorithms.

Basic Metrics

1. Sampled Color Intensities

Magnitudes of sampled RGB and opacity values at the ver-
tices of the iso-surface.

2. Dot Product

This metric compares gradient vectors computed on the iso-
surface using two different DVR algorithms. The dot product
of a pair of vectors is computed at each vertex of the tessel-
lated iso-surface. If gradients are to be interpolated (such as
for use by the central difference operator), the vectors are in-
terpolated at the vertices. If gradients are to be evaluated by
direct filtering functions, they are re-evaluated at the vertices
before calculating dot products.

16 32 64 1003 3 3 3

Figure 5: Sample visualizations of pseudo-curvature metrics on an
iso-surface of the Marschner-Lobb data. Four different resolutions,
from 16

3 to 100

3 , of the data are shown.

3. Gradient Magnitude

Gradient magnitude is an important value in volume classifi-
cation because it is related to the strength of the surface.

4. Strength of Surface

In DVR, the strength of surface [2] is given by the opac-
ity. The opacity is specified as a function of the data value
and gradient magnitude. We define the strength of surface
metric as the opacity value divided by the maximum surface
strength specified by the given surface classification scheme.
Unlike simply comparing opacity, this metric gives the rela-
tive strength of the surface produced by the different classifi-
cation schemes.

5. Ambient, Diffuse and Specular Color Intensities

These metrics measure the contributions of the classification
and gradient vectors to different color components given a
lighting model.

In Figure 4, some of these basic metrics are visualized on an
iso-surface of an MRI scanned human brain data set (courtesy of
University of North Carolina at Chapel Hill). Metric values are
mapped to the standard rainbow color-map.

Pseudo-curvature Metrics

We define pseudo-curvature as the perturbations (or variations) of
the basic metrics around the vertices of polygons on the iso-surface.
Note that we not only calculate this metric with gradient vectors but
also do so on other rendering information such as color intensities
and gradient magnitude.

An accurate method would be to calculate the curvature around
all edges of a vertex. In this paper, however, for a convenience and
speed, we simply calculate the variations of rendering information
within a polygon (a triangular patch in our case). Therefore, the
pseudo-curvature value ps is

ps =

abs(M

0

�M

1

) + abs(M

1

�M

2

) + abs(M

2

�M

0

)

area+ �

(3)

where M
i

is the basic metric value at the ith vertex. It is divided
by the area of the polygon plus a constant � to prevent ps from
becoming too large. For �, we use the average area of the triangular
patches on the iso-surface. Figure 5 is a set of sample visualiza-
tions of a pseudo-curvature metric on 4 different resolutions of the
Marschner-Lobb data. They are calculated using gradient vectors
computed using the central difference operator.

5 RESULTS

In this section, we give examples of applying our methodology
and metrics to analyze differences in volume rendering algorithms.



Each example shows more detailed analysis than possible with im-
age level comparison.

With the Salt Dome Data example (Section 5.1), we show how
our data level approach can help to find a more important source of
differences among multiple parameters. With the MRI Brain data
(Section 5.2), our example shows data level analysis yields different
results from image level analysis. Data level analysis reveals the
potential differences and serves as a starting point for the further
analysis such as finding the source of differences. In Section 5.3,
we attempt to analyze sources of differences in gradient calculation
methods with our metrics and Marschner and Lobb’s data [11].

5.1 Salt Dome Data

Figure 6 shows two rendered images of a salt dome data set and the
difference image. The size of the original data is 676 � 676 �

200 but the images are renderings of a (676 � 20 � 200) sub-
volume where the salt dome feature is very prominent. The orig-
inal seismic data were provided by the Sandia National Labora-
tory and then processed by the Modeling and Imaging Laboratory
(www.es.ucsc.edu/˜acti) at UCSC. The seismic data are com-
bined into one geological data set using seismic imaging techniques
[5]. This particular data set shows a large salt dome together with
geological layers. Data range in value from [-273.953, 207.951].
In addition, the data contain significant levels of noise and are very
sensitive to the surface classification algorithm.

Both algorithms that generated renderings A and B in Figure
6 use the Region Boundary Surface classification. The two algo-
rithms are identical except for the gradient calculations and opac-
ity mapping from gradient magnitudes. The difference image in
Figure 6 shows bigger differences near the salt dome boundaries
and other geological layers. Figure 13 (color plate) shows NS and
NSD (Number of Samples Differences) using a threshold opacity
of 0.8. It shows that we generally have a higher number of sam-
ples in A than B, for the respective runs to accumulate to an opacity
of 0.8. In NSD between A and B, we can observe higher differ-
ences at the boundaries. This suggests that differences of opacity
at the boundaries are larger. We further investigate the pair using
iso-surface based metrics. Figure 14 (a) and (b) (color plate) show
the dot product and magnitude differences of the gradient vectors
used by algorithms A and B. Little difference in directions (mostly
high values in the dot products, shown in Figure 14(a)) can be ob-
served. Their magnitudes are also generally similar except around
the boundary that surrounds the large salt region (mountain-shaped
region in the middle). Figure 14(c) shows very low differences in
color (or grey-scale) intensities. However, the strength of surface
metric (see Figure 14(d)) shows large differences in most of the
iso-surface area.

From the metrics we analyzed, we can make the following anal-
ysis. The image level differences confirm that we have larger differ-
ences along the structure boundary. Our data level analysis shows
the difference stemmed primarily from the differences in opacity.
Differences in color intensity are low because there are no signifi-
cant differences in the directions of the gradients. Opacity (or sur-
face strength) differences can be affected by both gradient magni-
tudes and their opacity mapping. There are very low differences
in gradient magnitudes. Therefore, most of the differences must
have come from the opacity mapping. However, near the bound-
ary of the salt region, the differences in the gradient magnitude also
contributed to the final image differences. The visualization users,
therefore, can adjust these parameters depending on their needs.
This example illustrates how we can analyze the contribution of
each parameter when algorithms differ in more than one rendering
parameter.

A

B

|A − B|

Figure 6: Two rendered images of the salt dome data and their dif-
ference image. The images are rendered from a 676�20�200 sub-
volume of the data that shows the salt dome structure prominently.
Data is courtesy of Sandia National Laboratory and the Modeling
and Imaging Laboratory at UCSC.



5.2 MRI Brain Data

Figure 7 shows 3 different images of the MRI brain data. The data
size is 128 � 128 � 84 and is a down sampled version of the MRI
brain data from the University of North Carolina at Chapel Hill.
Three images are generated using (A) binary, (B) Region Boundary
Surface, and (C) Isovalue Region Surface classification schemes.
All other rendering parameters are identical. In Figure 8, algorithms
B and C are compared to the reference algorithm A. The difference
images (jA � Bj, jA � Cj) of Figure 8 show that jA � Cj has
prominent differences around the silhouette of the head. The differ-
ences are probably due to the parameter that controls the thickness
of the Isovalue Surface classification scheme [9]. However, algo-
rithm C shows generally lower differences in most other areas (face
and open brain). The RMSE (Root Mean Square Error) readings
are also lower in jA � Cj than jA � Bj (see caption in the Figure
8). However, the NSD (Number of samples) metrics in Figure 8
show that the classification used in C has more potential for differ-
ence. The 3rd column of Figure 8 shows that until the accumulated
opacity is 0.6 at each pixel, both algorithms B and C needed a rel-

atively similar number of samples (NSD

A;B

�=0:6

and NSD

A;C

�=0:6

).

However, in the 2nd column, the NSD

A;C

�=0:9

metric shows that al-
gorithm C needed large differences in the number of samples to
accumulate an opacity of 0.9. The last column is the height sur-
face visualizations of the NSD

�=0:9

metrics. Metrics values are
mapped to height of the 2 dimensional mapping and visualized in
3 dimensions. Our simple NSD metrics show different results from
what the conventional image level metrics (RMSE) show. This dif-
ference results because the Isovalue Surface classification of algo-
rithm C uses only one data value and a thickness control while al-
gorithms A and B are defined over a range of data values. In fact,
algorithm C’s classification follows the facial surface profile while
the classifications of A and B have relatively homogeneous insides,
which are shown by the NSD

�=0:9

metrics. In this example, our
data level analysis lets users investigate the potential differences of
classification schemes. The analysis also points to a different con-
clusion than would have been drawn using simple comparisons of
differences in the final rendered images. Without data level anal-
ysis, one would think algorithm C is closer to A (reference). Data
level analysis shows algorithm C has more potential difference than
algorithm B. It serves as a good starting point for a further analysis.

5.3 Marschner-Lobb

Marschner and Lobb’s data [11] has often been used as a standard
to compare the quality of reconstruction and gradient filters. One of
its advantages is that it is an analytic data set and can therefore com-
pare different algorithms by measuring their error values. However,
volume rendering results using this data set are often compared us-
ing simple side-by-side comparisons. Figure 9 shows volume ren-
dered images of a 100

3 Marschner-Lobb data set using different
gradient filter functions. All other parameters such as classification
and sampling patterns are identical. We use a raycasting base al-
gorithm with back-to-front compositing. Algorithm A uses central
difference while B uses the intermediate difference operator. Al-
gorithm C uses a higher order gradient filter that is C2 continuous
with 3rd order error estimations [13]. We used C2 3EF first deriva-
tive filter functions as defined in [13]. From these images alone, not
all differences are obvious.

Difference images in Figure 10(a) shows that there are higher
differences in jA � Bj and the differences in jA � Cj are lower
and tend to be more uniform. Figure 10 (b) - (d) are data level met-
rics with threshold condition of accumulated opacity value 0.95.
Looking at the differences in eye distances metric to accumulate

opacity 0.95 at each pixel, ED
A;B

�=0:95

, is much more uniform than

ED

A;C

�=0:95

. However, looking at Figure 10 (c) and (d), sample col-

ors and opacities are much more correlated for A vs C than A vs
B. The circular lines indicate areas where rays passed through the
thin peaks of the wavy surfaces. The lower correlation in RGB
color channels are not surprising. The color values depend primar-
ily on data values with some alterations from shading calculations
using the gradient vectors. Recall that the opacity value is a func-
tion of both the data value and gradient magnitude. Therefore, the
color values tend to vary a lot while the opacity values tend to be
more uniform on the surface. The correlation metrics suggest that
algorithm C (higher order filter) behaved more similarly to A (cen-
tral difference operator) than B (intermediate difference operator).
However, the eye distance metrics suggest that the differences in
jA � Cj might stem more from differences in opacity. It subse-
quently suggests the differences came from gradient magnitudes
that affect opacity (or surface strength) rather than direction. Note
that the only difference in algorithms A, B, and C is the gradient
vector calculation method. Next, we analyze this case further with
our iso-surface based metrics.

Figures 11 and 12 show iso-surface based difference metrics.
The metrics are evaluated on an iso-surface of 0.5. All metrics,
except the dot product, are visualized in separate color-mapping
scales in order to bring out the spatial patterns in the images. For
this reason, their visualizations might be misleading but all differ-
ence metrics are much higher in A vs B than A vs C based on
the value ranges specified in Figure 11. Furthermore, they provide
some explanations for the content of the differences. Dot product
image of A � B, seen in Figure 11(a), shows a slightly less uni-
form distribution (note the fan shaped patterns near the center of
the data). On the other hand, directions of gradient vectors for A
and C are almost the same. Similar observations can be made using
the color intensity differences in Figure 11(c). Gradient magnitude
differences in (b) and surface strength differences in (d) show that
A vs B and A vs C have opposite patterns. We can also observe
that most of the differences in jA � Cj are from gradient magni-
tude (and subsequently, its surface strength) while differences in
jA � Bj are combinations of gradient magnitude and directions.
Another thing we can observe is the patterns of the difference visu-
alizations although they do not give direct explanations of algorithm
differences. For example, the region where there are higher differ-
ences in one has lower differences in another, except the center re-
gion where both have lower differences. Figure 12 shows pseudo-
curvature metrics using gradient direction and magnitude. In (b),
differences in the pseudo-curvature of gradient magnitude show dif-
ferent patterns in A vs B than in A vs C. Figure 12(a) shows that
we simply have a higher pseudo-curvature of gradient vector where
the surface has higher curvature.

In this example, we found the higher order filter (algorithm C) is
closer to the central difference operator (algorithm A) when com-
pared to the intermediate difference operator (algorithm B). Thresh-
old based metrics show highly correlated sample colors in A vs C.
They are consistent with the difference image statistics. However,
our iso-surface based metrics show that differences in jA�Cj stem
more from gradient magnitude differences. In jA� Bj, the differ-
ence is attributed to both magnitude and direction of the gradient
vectors (with a higher difference range). These metrics partially
explain the irregular pattern of the image difference of jA � Bj.
jA � Cj is relatively more uniform because the differences stem
from surface strength only (with a smaller difference range). Pat-
terns of differences in the iso-surface based metrics of A vs B re-
semble patterns in the image differences, which tells us that these
are good metrics to explain the differences in images. These are
useful details that may not be obtained easily by an image level
analysis. From experiments like this, volume rendering users can
learn to properly adjust other rendering parameters such as mapping
from gradient magnitude to surface strength.
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Figure 7: Renderings of MRI brain data with 3 different classification schemes: (A) binary, (B) Region Boundary Surface, and (C) Isovalue
Region Surface.
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Figure 8: Image level differences and NSD metrics. RMSE statistics for jA �Bj and jA� Cj are 15.1171 and 11.0733 (in the scale of 0.0
to 255.0) respectively (first column). NSD (Number of Samples Difference) metrics between A,B and A,C with threshold opacity 0.9 and 0.6
are shown with 2 dimensional color-mappings (second and third column). Images in the fourth column are the height surface visualizations
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Figure 9: Marschner-Lobb data rendered with 3 different gradient calculation methods: (A) central differences, (B) intermediate difference,
and (C) higher order filters with C2 continuity (C2, 3 EF)).
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Figure 10: Difference images and data level metrics of A vs B and
A vs C. The RMSE values are 13.0825 for jA�Bj and 11.0311 for
jA � Cj. Color-mappings of data level metrics (ED, Corr) use the
standard rainbow color-map.

6 CONCLUSION

We focused on the comparison of different surface classification
and gradient calculation methods in this paper. The image level
approach has inherent limitations because it analyzes the final ren-
dering results only. The data level approach has significant advan-
tages because it utilizes intermediate rendering information. We
presented an overview of our data level approach for comparing
DVR algorithms and described its advantages over the image level
approach. We presented new data level metrics that can be used to
do this task quantitatively and qualitatively. We described details of
threshold based metrics and iso-surface based metrics, and gave 3
examples demonstrating how they are used to analyze surface clas-
sification and gradient calculation methods in a data level fashion.
With the geological data, we demonstrated how our metrics helped
isolate an important parameter when two algorithms differ in multi-
ple rendering parameters. In the second example using the MRI hu-
man brain data, our data level metrics revealed potential differences

A vs B A vs C

(a) dot product

(b) gradient magnitude differences

(c) color differences

(d) surface strength differences

Figure 11: Comparisons using basic iso-surface based metrics. The
minimum and maximum values for color-mapping are (a) [-1.0,
1.0], (b) [0, 0.06], (c) [0, 0.554], (d) [0, 0.044], for A vs B and
(b) [-1.0, 1.0], (b) [0, 0.02], (c) [0, 0.254], (d) [0, 0.014] for A vs C.



(a) gradient curvature differences

(b) gradient magnitude curvature diff

A vs B A vs C

Figure 12: Comparisons of pseudo-curvature metrics. The mini-
mum and maximum values for color-mapping are: (a) [0, 3.69] (b)
[0, 0.095] for A vs B and (b) [0, 3.84] (b) [0, 0.005] for A vs C.

that refute the conclusions that would have been arrived at with im-
age level analysis only. In the third example with the Marschner-
Lobb data, our approach was able to perform more in-depth anal-
ysis of the gradient calculation functions. In this paper, we focus
on comparison analysis that can hopefully answer questions such
as why differences exist in DVR algorithms with a certain set of
rendering parameters. It is up to the developer to determine the ap-
propriate trade-offs for their applications and datasets. In summary,
the data level approach coupled with the appropriate metric is a sig-
nificant improvement over the image level approach for comparing
the effects of different surface classifications and gradient calcula-
tion methods in volume rendering.
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Figure 13: Visualizations of NS (Number of Samples) and NSD
(NS Differences).
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Figure 14: Analysis of the salt dome data via iso-surface based
metrics.


