
A Methodology for

Comparing Direct Volume Rendering Algorithms

Using a Projection-Based Data Level Approach

Kwansik Kim and Alex Pang

Computer Science Department

University of California, Santa Cruz, CA 95064

ksk@cse.ucsc.edu, pang@cse.ucsc.edu

Abstract. Identifying and visualizing uncertainty together with the data is a well

recognized problem. One of the culprits that introduce uncertainty in the visual-

ization pipeline is the visualization algorithm itself. Uncertainties introduced in

this way usually arise from approximations and manifest themselves as artifacts

in the resulting images. In this paper, we focus on comparing different direct

volume rendering (DVR) algorithms and their artifacts as a result of DVR algo-

rithm selections and their associated parameter settings. We present a new data

level comparison methodology that uses differences in intermediate rendering

information. In particular, we extend the traditional image level comparison tech-

niques to include data level comparison techniques. In image level comparisons,

quantized pixel values are the starting point for comparison measurements. In

contrast, data level comparison techniques have the advantage of accessing and

evaluating the intermediate 3D information during the rendering process. Our

data level approach overcomes limitations of image level approaches and provide

capabilities to compare application dependent details as well as general render-

ing qualities. One of the key challenges with our data level comparison approach

is finding a common base for comparing the rich variety of DVR algorithms. In

this paper, we present how a projection algorithm can be used as a base for com-

paring other DVR algorithms. In addition, a set of projection-based metrics are

derived to quantify the comparison measurements among DVR algorithms. The

results presented in this paper complement our earlier findings where a ray-based

approach was used as the base for comparing other DVR algorithms.

Key Words and Phrases: Scientific visualization, direct volume rendering, uncer-

tainty, error, difference, similarity, metrics.

1 Introduction

Although a large number of visualization methods have been developed, few provide

the foundations and methodologies to compare and evaluate them against each other.

This shortcoming has been raised as a critical issue for the objective interpretations of

scientific data [2, 9, 21, 22]. Direct volume rendering (DVR) is one of the most popular

methods for visualizing 3D scalar data sets. These methods have been extensively inves-

tigated resulting in a rich variety of algorithms. Some of these can be found in [5, 6, 8,

10, 13, 15–17]. Unfortunately, this plethora of DVR methods produces images that are

different from each other. In critical applications, it can be very disconcerting to have

even slight differences in images rendered by various volume rendering algorithms. It

is therefore necessary for both users and developers to be able to do in-depth study on

the differences. Important differences stem from varying degrees of approximation in

reconstruction, material classification (e.g. transfer functions), and accuracy in physical

simulation of light and material interactions. Because it is a perceptual issue and DVR

algorithm variations are often arbitrarily non-linear, it is very difficult to quantify errors

(or uncertainties) that are introduced in the final rendered image. In addition, unlike

quality issues in the image synthesis and image processing communities, criteria for

measuring the quality often depend on the purpose of the particular visualization. They

are not necessarily about how realistic or aesthetically satisfactory the final images are.

Fortunately, more and more DVR papers address the important issue of volume

rendering qualities and comparisons [9, 11, 20, 21]. In those that address the issue, the

norm is to use image level comparisons, and sometimes at the image summary level

at best. Combinations of image analysis methods and summary statistics have been

used to compare rendered images. For example, wavelet based image metrics [1] have

been proposed to help determine perceptual similarities between volume rendered im-

ages. However, there are limitations to image metrics such as summary statistics and

perceptual metrics as well. Williams and Uselton [21] first described some of the dif-

ficulties and limitations of image comparison. They presented the need for providing

rigorous specifications of the volume rendering parameters, a set of image difference

classifications and corresponding metrics for each category. However, there are inher-

ent limitations to image level comparisons. While image level comparisons can provide

information as to the location and degree by which two images differ, they often do not

provide enough information as to why the two resulting images differ in general.

This paper addresses this shortcoming by proposing the use of data level comparison

techniques. The goal is that if two images differ, then we want to provide an explana-

tion for the causes for such difference. The name data level comparison was inspired by

the work of Pagendarm and Post [12]. Data level methods incorporate intermediate and

auxiliary information in the rendering process and use this information to generate a

data level comparison image. Another distinguishing factor is that image level compar-

isons quantize data values then compare, while data level comparison methods compare

data values then quantize thereby resulting in a greater dynamic range of comparison

values. As in the Figure 1(a), we can compare volume data, intermediate rendering data,

or final rendered images. In this paper, we use data level comparison to take advantage

of any intermediate information in the volume rendering pipeline before the final image

is generated.

Because of the wide variety of DVR algorithms, some of them have drastically

different approaches and therefore difficult to obtain registered, intermediate rendering

information for comparisons. Hence, we compare algorithms by first mapping them to

a base or reference algorithm and then deriving metrics natural to the base algorithm

(Figure 1(b)). We consider this mapping as invertible and thus we can experiment with

multiple base algorithms and develop their corresponding metrics. In this paper, we

use the projection algorithm as our base algorithm, and focus our attention on DVR

algorithms applied to regularly gridded data.

(a) comparison levels (b) DVR comparison basis

data 1

data 2

DVR 1

DVR 2

image 1

image 2

volume data rendering data pixel values

rendering 1:

rendering 2:

comparison:

comparisons

metrics

base algorithm

algorithm 1 algorithm 2

Fig. 1. Types of comparisons (a) and basis for comparing algorithms (b). (a) highlights three

different areas where one can perform comparison: data, rendering information, and pixel values.

Data level comparison includes comparison of data and rendering information, while image level

comparison works with pixel values. (b) shows the architecture for comparing two different DVR

algorithms via a common base algorithm.

2 Previous Work

In our earlier work [3, 4], we described how DVR algorithms can be simulated using

ray casting as a base or reference algorithm (Figure 1(b)). For example, projection-

based algorithms were simulated by intersecting the ray with the set of projected poly-

gons of each cell. We also developed several ray-based metrics such as the distance the

ray traveled, the number of samples along each ray, and similarity measures for sam-

ple colors and data along each ray. Here, we complement our earlier work by using a

projection-based algorithm as our base or reference algorithm. This involves mapping

or simulating other DVR algorithms, such as ray casting, into projection-based DVR

algorithms.

3 Data Level Approach

Figure 1(a) delineates image level comparison (using pixel values) from data level com-

parison (using volume and rendering data). In DVR, the intermediate information may

include items related to the rendering process. Examples include: distribution of opac-

ities, values that contribute to a pixel, and minimal or maximal sample values along

the viewing direction. Intermediate information may also include items related to the

volume rendering algorithm. Transfer functions, sampling locations and frequency, in-

terpolation functions, opacity threshold, and projection filters are examples of informa-

tion related to the volume rendering algorithm. It should be noted that in some cases

this distinction is blurred. In either case, these information and others can be used to

generate metrics for data level comparison.

There are two different approaches for collecting these intermediate information.

One approach is to collect them directly from the different DVR algorithms. The other

approach is to first map other DVR algorithms to a base or reference algorithm, then

collect the metrics from this base algorithm. Both approaches have their advantages

and disadvantages. The main advantage of the first approach is the accuracy of the in-

termediate information since we do not need to simulate or map the algorithms to a

base algorithm and thereby possibly introducing some errors. The disadvantages of this

approach are: (a) difficulty in collecting registered and meaningful intermediate infor-

mation that can be compared across different DVR algorithms, and (b) the need to put

data collection code in different DVR implementations. On the other hand, the main

advantages of the second approach are: (a) ability to compare different DVR algorithm

on the same set of intermediate data as collected from the reference algorithm, and (b)

multiple choices for the reference algorithm since the mapping is invertible. That is,

as demonstrated by this paper and our earlier work [3], a ray-based DVR algorithm

can be mapped to a projection-based DVR algorithm, and vice versa. The second ap-

proach also has a number of disadvantages: (a) difficulty of completely specifying all

the rendering parameters to precisely control the mapping of some DVR algorithms to

the base algorithm, and (b) the need to map to the base algorithm or simulate other

DVR algorithms. The critical thing to address the first difficulty of the latter approach is

that rigorous specifications of all rendering parameters are necessary in order to faith-

fully simulate a given DVR algorithm. In the absence of this rigor, emphasis should be

placed on specifying the more important rendering parameters. Our basic assumption

is that the major differences from different DVR images result from those important

rendering parameters.

4 Projection as a Base Algorithm

A popular model for computing the color intensities as the light passes through a se-

quence of translucent material is to assume that the light is attenuated by the opacities

of the material. This is often described by the compositing equation below:

C

out;i

= �

i

C

i

+ (1� �

i

)C

in;i

(1)

�

i

is the opacity and C

i

is the color of the ith object to be composited. C
in;i

is the color

intensities before the ith object is rendered (or composited) and C

out;i

is the result of

rendering (or compositing) the ith object. Integrating this equation yields the so called

volume rendering integral:

C(a; b) =

Z

b

a

E(s)e

�

R

s

a

�(x)dx

ds (2)

C(a; b) is the color intensity contributions through a line from position a to b. E is

the color emission function and � is the differential opacity function. One may view

different DVR algorithms as variations on how to approximate the emission function

E and the solution of the volume rendering integral. For example, Eqn. 2 has a closed

form solution if we assume constant color emission and opacity between the interval

of integration. Image order algorithms, like ray casting, discretize the volume rendering

integration process and compute multiple compositions (Eqn. 1) of the integrated colors

(C(a; b) in Eqn. 2) of small adjacent sampling intervals. The simplest approximation is

simply C(a; b) = E(a) or E(b) at each sampling point. Our challenge then is to make

a projection-based algorithm general enough to facilitate simulations of the different

variants of DVR algorithms.

The structure of our base algorithm is the same as that of any object order algorithm

like coherent projection [17] or splatting [16, 5]. The basic idea of these object order al-

gorithms is to compute the contributions of the sub-volumes and composite them to the

images in the proper order. We conveniently collect any desired metrics as the algorithm

calculates contributions to the final rendered image. The structure of our comparison al-

gorithm is:

Procedure project:

1. Determine the order of volume cells or voxels to be projected.

2. For each cell or voxel, in the appropriate order

(a) Compute the contribution of the cell or voxel and composite.

(b) Collect metrics.

The term cell refers to the cube formed by the 8 neighboring data points in a regular

grid volume. The term voxel refers to the region around a data point. The shapes of

the voxel depend on the data model. In splatting algorithms, the shape (and thus its 2

dimensional contribution to the final rendered image) is defined as a function of the

distance from the data point.

Projection-based algorithms [17, 14] usually take advantage of hardware polygon

shading found in modern workstations. However, the projection algorithms are general

enough to be extended and simulate effects of other DVR algorithms if they are imple-

mented in software using volume scan conversion. Therefore, in step (2a) of procedure

project, we implemented volume scan conversion to process a set of projected polygons

in software. This allows us to:

– simulate other variations of DVR algorithms (e.g. raycasting) by varying the vol-

ume integration method at each pixel in the volume scan conversion procedure.

– derive projection-based metrics to compare a wide range of algorithms on a com-

mon basis.

As pointed out in [19], scan conversion of surface polygons has been studied exten-

sively, but the process in volume rendering is a different problem. In scan converting

surfaces, the surface (or polygon) has the color properties to be scanned. However, in

scan converting a volume cell (or voxel), we need to process the material (or data)

between volume cell faces that has the color properties. In the following description

of the procedure composite sub-volume, the details of our volume scan converting is

explained. The structure of our base algorithm is the same as other volume scan convert-

ing procedures but it carries additional information such as relative locations of front

and back points for simulations of other algorithms (at lines in 2(c)(2) of procedure

composite sub-volume below).

Procedure composite sub-volume:

1. Decompose the given sub-volume into a set of projected polygons

2. For each polygon P,
(a) Get the range R of the scanlines that P occupies in screen space and set up the

edge table.

(b) Empty the active edge table.

(c) For each scanline of the range R in bottom-to-top order,
(1) Update active edge table.

(2) For each pixel from the left edge to the right edge,

� Update front and back pixel information.

� Compute the contribution between the front and back sub-volume at

the pixel.

For projection based algorithms such as Coherent Projection [17] or splatting [5,

16], the footprint of a cell is often approximated as a set of polygons. The typical usage

of these projection algorithms can be easily simulated with our base algorithm by us-

ing surface scan conversion only. In this case, the contribution from a cell (or voxel) is

simply a color intensity interpolated within the footprint polygon. Sampling and recon-

struction of volume data and color mappings are done only at the vertices of projected

polygons as in [5, 16, 17].

Image order algorithms, such as variations of ray casting, can be simulated by

changing the sampling patterns and the approximations to the volume rendering integral

(i.e. last line of Procedure composite sub-volume). Figure 2 (color plate 1) illustrates

the simulation of variants of ray casting while projecting a volume cell. The figure

shows a cross sectional view perpendicular to the projection plane. For each pixel, the

base algorithm updates the information needed to project a volume cell, such as data

values and relative locations of the front and back points within the cell. Using the

specifications of rendering parameters, such as sampling patterns, we can calculate the

color contributions of the cell along the ray and composite them to the final image. Pixel

(a) of figure 2 shows values used by a ray casting algorithm that samples at cell face

intersections. The pink colored squares represent the sample points. The color contri-

bution for pixel (a) is calculated using Eqn. 2 assuming a constant color value between

the sampling interval (often the average of front and back sample colors is used) and

composited to the screen (using Eqn. 1). Pixel (b) shows the values used by another

ray casting algorithm that uses regular sampling. Pixels (c) and (d) together show yet

another variation as used by volume slicing. Here, it is simulated as a regular sampling

pattern with the first sample point starting from the plane closest to the screen. For

all the sample points in the figure 2, either their data can be reconstructed and colors

mapped from the transfer function, or their sample colors are interpolated using the

pre-mapped colors of the eight cell corners.

In the context of scan converting polygons for projection-based DVR algorithms,

we use the following to classify several popular DVR algorithms:

1. Data model – this distinguishes whether data is defined at vertices or at voxel

centers. An associated interpolation or distance function is also specified for each.

2. Interpolation value – this distinguishes whether data values are reconstructed or

color values are being interpolated at the polygon vertices or sample locations. That

is, the color intensities (E) in Eqn. 2 are calculated either by

– interpolating the data values and then evaluating the transfer function, or

– evaluating the transfer function first, then interpolating the colors.

3. Scan conversion procedure – this specifies whether polygon or volume scan con-

version is used to render the polygonal decompositions of volume cells. In polygon

scan conversion, a software Gouraud shading is used to render polygons.

4. Sampling strategy – this distinguishes whether samples are taken regularly or only

at cell face intersections, and how they should be distributed throughout the entire

volume data.

Based on this four level classification scheme, we can identify several DVR algo-

rithms that can be simulated as projection-based algorithms. This classification is not

meant to be exhaustive but simply illustrates how different DVR algorithms can be

viewed in terms of their variants. For complete specifications of DVR algorithms, more

detailed rendering parameters within each criterion should be specified. Used in this

manner, Table 1 shows how some algorithms are distinguished by their data model,

interpolation value, scan conversion procedure, and sampling pattern.

Data Model Interpolation Scan Sampling DVR

Values conversion Pattern Algorithm

Cell model data or color volume regular ray casting

with volume cell face ray casting

Tri-linear color volume regular volume texture

Interpolation volume cell face shear-warp

color polygon cell face coherent

projection

Voxel model with irregular (depends

distance function color polygon on distance function) splatting

Table 1. Illustration of how different DVR algorithms can be expressed in terms of

projection-based algorithm using different combinations of the data model, value being

interpolated, scan conversion type, and sampling pattern.

The data model in column (1) comes with either an interpolation function or dis-

tance function. When the data model assumes values are defined at vertices (cell model),

an interpolation function is often used. In such situations, tri-linear interpolation seems

to be the interpolation method of choice in many DVR implementations. However, other

possibilities include higher order interpolations or adaptive reconstruction [7]. When

the data model assumes values are defined at voxel centers (voxel model), a distance

function is often used to model how data vary within the confines of the voxel. Other

distance functions, as well as simpler voxel modeling using nearest neighbors, can also

be incorporated.

The simulations of various DVR algorithms that we just described have varying de-

grees of accuracy. More precise specifications need to be made if an exact simulation

is desired. For example, it is important to note that different methods of polygonaliza-

tion may lead to different looking images (see Figure 3, color plate 1). Thus, the com-

plete polygonalization policy must also be specified if a faithful simulation is desired.

Another thing to note is that projection-based algorithms often rely on hardware scan

conversion of the polygons. Therefore, it is also possible to notice some differences,

especially along the boundaries of projected polygons.

We verified our approach and implementation with a renderer called mdh [17, 18]

which has multiple choices of algorithms. We made the rendering parameters of our

simulation as identical as possible to those for the algorithms in mdh and made sure that

the differences in the intermediate rendering information are within a given tolerance.

That is, we took differences in colors, locations and data values for each front and back

vertices of the projected polygons of all volume cells between our simulations and the

projection algorithm of mdh and made sure that the differences are negligible (less than

10

�7 in scale of 0 to 1.0 for each color channel).

5 Metrics for Projection-based DVR Comparisons

In this section, we present a set of data level metrics derived from our projection al-

gorithm basis and proposed for comparing DVR algorithm simulations. These metrics

should reveal information about the volume data (or color intensities) as well as the be-

havior of DVR algorithms. The idea is to identify differences in algorithms that may not

be revealed from image level metrics alone. Note that there are numerous other useful

intermediate information (e.g. gradient and normal calculations, and surface classifica-

tion) that can also be collected and used as metrics.

– Threshold-based Metrics

The following metrics are obtained to examine the behavior of a DVR algorithm

for a given threshold condition. Each metric is measured at each pixel when the

accumulated (or sample) color components reaches the threshold condition. While

opacities are often used for specifying threshold levels, other color components can

also be used. In our current implementation, a user can give a threshold condition

that combines color and opacity threshold values.

1. Number of cells

Different algorithms use different rendering parameters and thus each algo-

rithm may require a different number of cells to satisfy the given threshold

condition.

2. Distances

It is useful to measure the distance traveled into the volume before reaching a

specified threshold condition at each pixel. Distance can be measured from the

user’s eye position (eye distance) or from the bounding box of the data volume

in the viewing direction (volume distance).

– Contribution Metrics

The following metrics measure the contribution of each cell to the final rendered

image. The user specifies a pixel in the image to probe, then metrics are measured

and visualized to show which cells contributed to the selected pixel and by how

much. These metrics can be used with or without specifying an opacity or color

threshold condition. Contribution metrics for each cell may either be absolute or

additive. Absolute contribution is the amount contributed by a data cell to a pixel

as if there is nothing between the cell and the image plane. Additive contribution

is the actual amount of contribution by a data cell to a pixel because its absolute

contribution is attenuated by the accumulated opacity so far. Looking at the front-

to-back composition equation,

C

acc;new

= C

acc;old

+ (1� �

acc;old

)C

cell;i

(3)

where C

acc;new

is the new color intensity after composition, C
acc;old

is the accu-

mulated color before composition with the ith cell, C
cell;i

is the color contribution

by the ith cell, and �

acc;old

is the opacity component of C
acc;old

. The absolute con-

tribution metric uses the term C

cell;i

. On the other hand, the additive contribution

metric uses the term (1� �

acc;old

)C

cell;i

.

1. Pixel Probe

This measures the amount of color intensity contributed by each cell to the

pixel being probed.

2. Cell Probe

This is similar to the pixel probe but shows other information (e.g. averages,

minimum, maximum, and standard deviation) by the contributing cells to the

target pixel. These statistics are collected based on how each data cell con-

tributed to the pixels in the final image. For example, when the contribution

from each cell is distributed unevenly across several pixels, a measure of spread

can be calculated for that cell.

– Data Probe

Similar to cell probe, except the user selects a particular data cell and is shown the

contribution made by that cell on the different pixels of the DVR image. Note that

this is different from the projection filter.

– Difference Metrics

While threshold metrics and contribution metrics probe how each algorithm indi-

vidually behaves, differences of these metrics can show where and how two or more

algorithms differ. For example, in addition to the difference and statistical mea-

sures (e.g. average, minimum, maximum, and standard deviations) between two

algorithms, differences of the cell probe metric includes the correlation of color

intensities generated by the two algorithms for the pixels that are covered by the

selected cell.

6 Examples

In this section, we show some examples of applying our comparative visualization

methods and discuss the applicability of our metrics. Figure 4 (color plate 1) shows

volume rendered images generated by two different algorithms. Both algorithms render

a 64

3 Hipip (High Potential Iron Protein) volume data. The image (a) is generated by

ray casting (simulation with our base algorithm) with sampling and reconstruction of

data at the cell faces. The image (b) shows an image generated using a polygon projec-

tion algorithm. The image in (c) shows the absolute differences between image (a) and

image (b). Color intensities in the difference image (c) are magnified to show the dif-

ference clearly (each color intensity is multiplied by 10). This image based comparison

method can show location and magnitudes of differences but not much more.

Figure 5 (color plate 2) demonstrates how our data level metrics can provide more

insight. Image (a) shows the colormapped visualization of the number of cells needed

to reach an opacity level of 0.11 using the ray casting algorithm that generated image

(a) of Figure 4. It shows that the regions around the red and blue molecules require

more number of cells to be examined before reaching the given opacity. Image (b)

shows the number of cells needed to reach an opacity level of 0.2 using the polygon

projection algorithm that produced image (b) of Figure 4. Image (c) shows differences

in the number of cells to reach opacity 0.15 between the two algorithms. It shows a

higher difference near the boundary regions of the red and blue molecules. Aside from

the opacity threshold, users can also try threshold conditions composed of other color

channels. Users can confirm that one source for the differences in Figure 4 is due to

the different number of cells used by each algorithm. The users can further compare

algorithms using metrics such as pixel probe for specific pixels of interests. Images (d)

and (e) of Figure 5 show absolute and additive color contributions from all the cells

contributing to a specific pixel. In particular, the data cells that contributed to the red

component of the selected pixel are highlighted. The absolute contributions in (d) show

that the red intensities composited were prominently higher in a small region in the

volume data, but the additive contributions in (e) are more widely spread. The yellow

arrows show the viewing directions and the front-to-back traversal of the algorithm.

Figure 6 (color plate 2) illustrates a hypothetical case study using our metrics. The

two DVR images are generated using our scanline simulation of a ray-based DVR

method, but with different transfer functions. The volume data is from a CAT scan

of a human head. In column (a), the location of a hypothetical tumor in the brain is

identified to be within the box region. The upper image shows the tumor but the lower

image does not show it. The visualizations in column (b) show the volume distance

metric associated with each image. The opacity threshold is set to 0.31 in both cases.

Black color is assigned to pixels where the opacity does not reach the opacity threshold.

In the lower image of column (b), near the region of interest, an almost flat, blue wall

indicates that the pixels accumulated enough opacity without traveling through many

layers of data cells. On the other hand, the upper image of column (b) shows an al-

most uniformly black region where the blue wall used to be. With the exception of the

tumor, the region around it did not produced sufficient opacity. This tool is especially

useful if the person understands how the DVR algorithms work and how they are af-

fected by the different rendering parameters. However, other metrics can also help users

to understand and verify the rendering methods. Columns (c) and (d) show data level

analyses using contribution-based metrics. A pixel of the tumor is first selected to be

examined. In column (c), the absolute amount of opacity contributions are visualized

for all sub-volume cells that contribute to the given pixel. In column (d), the additive

opacity values are shown. The visualizations show that the transfer function for the

lower row produced opacity values that are too high to reach the tumor. On the other

hand, on the top row, both absolute and additive contributions are highest where the hy-

pothetical tumor is located. From the comparisons of the final rendered images alone,

it may not be obvious whether the opacity for brain tissue is set too high or the data

range for the tumor tissues is not set properly to be detected by the transfer function.

This case demonstrates that our comparative visualization techniques can provide more

insight into why two rendered images are different and how rendering parameters (such

as transfer function) affect the resulting images.

7 Conclusion

We presented a new data level framework that solves difficulties of comparing differ-

ent DVR algorithms and demonstrated how different DVR algorithms can be simulated

using the projection algorithm basis. From this base or reference algorithm, several

new data level comparison metrics were then presented that highlight different aspects

of the volume data and the DVR algorithms. These metrics, used individually and in

combination, provide additional information beyond how two different DVR images

are different – they seek to provide clues as to why and how the two images may be

different. We also gave examples of using our metrics and a hypothetical case study

that demonstrates the applicabilities of the metrics. Our new methodology overcomes

the limitations of conventional image level comparisons and helps us to perform more

in-depth comparisons which are closely related to the purpose of a particular visual-

ization application as well as general rendering quality comparisons. These results are

important to scientists to help them interpret different visualization results objectively.

Acknowledgements

We would like to thank Craig Wittenbrink and Suresh Lodha for collaborative work

on uncertainty visualization and Sam Uselton for comments and feedback on image

level comparisons. We would also like to thank Chang Sung Jeong and Carol Mullane

for help with proofreading this paper. This projected is partially supported by NSF

grant IRI-9423881, DARPA grant N66001-97-8900, NASA NCC2-5281, ONR grant

N00014-96-1-0949, and LLNL/DOE grant B347879.

References

1. Ajeetkumar Gaddipatti, Raghu Machiraju, and Roni Yagel. Steering image generation with

wavelet based perceptual metric. In Computer Graphics Forum. Eurographics, September

1997.

2. A. Globus and S. Uselton. Evaluation of visualization software. Computer Graphics, pages

41–44, May 1995.

3. Kwansik Kim and Alex Pang. Ray-based data level comparison of direct volume rendering

algorithms. Technical Report UCSC-CRL-97-15, UCSC Computer Science Department,

1997.

4. Kwansik Kim and Alex Pang. Ray-based data level comparative visualization of direct vol-

ume rendering algorithms. In to appear in Scientific Visualization, Dagstuhl Workshop Pro-

ceedings. Springer, 1998.

5. David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement algorithm for

volume rendering. In Computer Graphics (ACM Siggraph Proceedings), volume 25, pages

285–288, July 1991.

6. Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–

261, July 1990.

7. R. Machiraju and R. Yagel. Reconstruction error characterization and control: A sampling

theory approach. IEEE Transactions on Visualization and Computer Graphics, pages 364–

378, December 1996.

8. Tom Malzbender. Fourier volume rendering. ACM Transactions on Graphics, 12(3):233–

250, July 1993.

9. S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume rendering.

In Proceedings of 1994 Symposium on Volume Visualization, pages 100–107. ACM, October

1994.

10. Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics, 1(2):99–108, June 1995.

11. Torsten Moller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Classification and local

error estimation of interpolation and derivative filters for volume rendering. In Symposium

on Volume Visualization, pages 71–78, San Francisco, CA, October 1996. ACM/IEEE.

12. Hans-Georg Pagendarm and Frits H. Post. Comparative visualization – approaches and ex-

amples. In M. Gobel, H. Muller, and B. Urban, editors, Visualization in Scientific Computing,

pages 95–108. Springer-Verlag, 1995.

13. P. Sabella. A rendering algorithm for visualizing 3D scalar fields. In Computer Graphics,

pages 51–58, August 1988.

14. P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering.

In 1990 Workshop on Volume Visualization, pages 63–70, San Diego, CA, December 1990.

15. Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via 3D tex-

tures. In ACM/IEEE Symposium on Volume Visualization, pages 22–30, San Francisco, CA,

October 1996.

16. L. Westover. Footprint evaluation for volume rendering. In Computer Graphics, pages 367–

376, August 1990.

17. Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume

rendering. In Proceedings of SIGGRAPH 91, pages 275–284, 1991.

18. Jane Wilhelms and Allen Van Gelder. Multi-dimensional trees for controlled volume ren-

dering and compression. In Proceedings of the Symposium on Volume Visualization, pages

27–34, color plate 125, Washington, D.C., 1994.

19. Jane Wilhelms, Allen Van Gelder, Paul Tarantino, and Jonathan Gibbs. Hierarchical and

parallelizable direct volume rendering for irregular and multiple grids. In Proceedings of

IEEE Visualization ’96, pages 57–64, 1996.

20. Peter L. Williams, Nelson L. Max, and Clifford M. Stein. A high accuracy volume renderer

for unstructured data. Technical Report UCRL-JC-126942, Lawrence Livermore National

Laboratories, September 1997.

21. Peter L. Williams and Samuel P. Uselton. Foundations for measuring volume rendering

quality. Technical Report NAS-96-021, NASA Numerical Aerospace Simulation, 1996.

22. Craig M. Wittenbrink, Alex T. Pang, and Suresh Lodha. Verity visualization: Visual map-

pings. Technical Report UCSC-CRL-95-48, Univ. of Cal. Santa Cruz, 1995.

volume data

a volume cell

screen

Pixel (b)

sample points

pixels

Pixel (a)

Pixel (c)

Pixel (d)

Fig. 2. Simulations of image based algorithms using our projection base algorithms. The black

square and the green vertical line illustrates a volume cell and its projection to the screen. For

each pixel, the color contributions are computed by taking sample points and compositing their

values along the viewing direction. The blue vertical lines indicate a volume slicing plane shared

by pixels (c) and (d).

ray traced
image

3 different polygon projections

(a) (b) (c) (d)

Fig. 3. Ray casting and projection algorithms with different polygonalization. The volume data is

4

3 with uniform values except at the two corners. The viewing direction is orthogonal to the front

face. Above image (b), (c) and (d), we show the three types of polygonalization: (b) a square,

(c) and (d) two different triangulations of a square. The images show that different triangulations

have different effects on Gouraud shading.

(a) (b) (c)

Fig. 4. Volume rendering and image level comparisons of Hipip. Images (a) and (b) are generated

using our simulations of (a) ray casting with data samplings and reconstructions at cell faces,

and (b) polygon projection such as coherent projection. Image (c) shows the absolute differences

between (a) and (b). MSE (Mean Square Errors) and RMSE (Root Mean Square Errors) of actual

difference intensities are (4.882487, 1.574969, 2.983297) and (2.209635, 1.254978, 1.727222)

for each red, green and blue channel respectively. All image sizes are 256 � 256.

(a) (b) (c) (d) (e)

low high

Fig. 5. Data level comparisons of algorithms used in Figure 4. (a) shows the number of cells

needed to reach opacity of 0.11 with with ray casting simulation, (b) shows the number of cells

needed to reach opacity of 0.21 with the polygon projection algorithm, (c) shows differences

in the number of cells needed to reach opacity of 0.15 for both algorithms. Colors are used to

indicate relative values of the metric. Black indicates regions that did not reach the threshold.

The pixel probe visualizations shows the absolute (d) and additive (e) red intensity contributions

of data from the volume to the pixel marked by the cross hair.

(a) (b) (c) (d)

colormap

low high

Fig. 6. Case study illustrating a hypothetical tumor and how the volume distance metric (b) and

the pixel probe (c) and (d) can shed more insight. Visualizations of column (c) and (d) show

differences in absolute and additive color contributions from volume cells.

